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Abstract. Mathematical models have proven valuable in understanding the dynamics of HIV-1 in-
fection in vivo. By comparing these models to data obtained from patients undergoing
antiretroviral drug therapy, it has been possible to determine many quantitative features of
the interaction between HIV-1, the virus that causes AIDS, and the cells that are infected
by the virus. The most dramatic finding has been that even though AIDS is a disease
that occurs on a time scale of about 10 years, there are very rapid dynamical processes
that occur on time scales of hours to days, as well as slower processes that occur on time
scales of weeks to months. We show how dynamical modeling and parameter estimation
techniques have uncovered these important features of HIV pathogenesis and impacted the
way in which AIDS patients are treated with potent antiretroviral drugs.
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1. Introduction. Infection by human immunodeficiency virus-type 1 (HIV-1) has
many puzzling quantitative features. For example, there is an average lag of nearly 10
years between infection with the virus and the onset of AIDS in adults. The reason
for this time lag remains largely unknown, although it seems tied to changes in the
number of circulating CD4+ T cells. The major target of HIV infection is a class of
lymphocytes, or white blood cells, known as CD4+ T cells. These cells secrete growth
and differentiation factors that are required by other cell populations in the immune
system, and hence these cells are also called “helper T cells.” When the CD4+ T
cell count, which is normally around 1000 mm−3, reaches 200 mm−3 or below in an
HIV-infected patient, then that person is classified as having AIDS. Because of the
central role of CD4+ T cells in immune regulation, their depletion has widespread
deleterious effects on the functioning of the immune system as a whole and leads to
the immunodeficiency that characterizes AIDS.

∗Received by the editors February 4, 1998; accepted for publication (in revised form) July 11,
1998; published electronically January 22, 1999. Portions of this work were performed under the
auspices of the U.S. Department of Energy. This work was supported by NIH grants RR06555 and
AI40387. The U.S. Government retains an irrevocable, nonexclusive, royalty-free license to publish,
translate, reproduce, use, or dispose of the published form of the work and to authorize others to do
the same for U.S. Government purposes.

http://www.siam.org/journals/sirev/41-1/33510.html
†Theoretical Biology and Biophysics Group and Center for Nonlinear Studies, Theoretical Di-

vision, Los Alamos National Laboratory, Los Alamos, NM 87545 (asp@receptor.lanl.gov). Current
address for the second author: Institute for Mathematics and Its Applications, University of Min-
nesota, Minneapolis, MN 55455 (pnelson@ima.umn.edu).

3



4 ALAN S. PERELSON AND PATRICK W. NELSON

The reason for the fall in the T cell count is unknown, as are the processes
that determine the rate of fall. T cells are normally replenished in the body, and
the infection may affect the source of new T cells or the homeostatic processes that
control T cell numbers in the body. Although HIV can kill cells that it productively
infects, only a small fraction of CD4+ T cells (10−4 to 10−5) are productively infected
at any one time. Thus, in addition to direct killing of T cells, HIV may have many
indirect effects [2, 43].

Over the past decade, a number of models have been developed to describe the
immune system, its interaction with HIV, and the decline in CD4+ T cells. Both
stochastic and deterministic models have been developed. Stochastic models [41, 42,
64] can be used to account for the early events in the disease, when there are few
infected cells and a small number of viruses, or situations where the variability among
individuals is of interest. One class of stochastic models has looked at the effects
of increasing variability among viral strains, as a means of escaping control by the
immune system, in the progression to AIDS [44, 45, 46, 48], but this approach has
been criticized [63, 68]. Deterministic models, which have been developed by many
authors [1, 10, 12, 15, 17, 18, 25, 26, 27, 29, 30, 31, 32, 33, 37, 38, 39, 40, 49, 54, 56, 57,
59, 61, 62, 66], examine the changes in mean cell numbers, and are more applicable
to later stages of the process in which population sizes are large. These models
typically consider the dynamics of the CD4+ T cell and virus populations as well as
the effects of drug therapy. In some of these models other immune system populations,
such as macrophages or CD8+ cells, have been included. Many of these models,
and particularly ones developed before 1995, have tended to focus on explaining the
kinetics of T cell decline. Unfortunately, many different models have been able to,
more or less, mimic this aspect of HIV infection, and to make progress, additional
criteria needed to be developed. The impetus for further modeling came with the
development of rapid, sensitive, and accurate methods of measuring the number of
virus particles in blood. Each virus particle contains two RNA molecules that can be
measured by quantitative polymerase chain reaction (PCR)-based methods. Thus, in
addition to mimicking changes in T cell kinetics, current models also need to account
for the change in the amount of virus detected in blood and possibly other tissues and
bodily fluids. Further, experimental methods have been developed that can measure,
albeit with less accuracy than the PCR-based methods, the number of infected cells in
a tissue or blood sample [6, 19, 51]. Thus, theories also need to explain the dynamical
changes in the number of infected cells.

In this article we review recent developments in which modeling has made a sub-
stantial impact on our thinking and understanding of HIV infection. Because of the
difficulties of doing experiments in humans, fundamental information has been lack-
ing about the dynamics of HIV infection. For example, because the disease takes
10 years, on average, to develop, many people thought that the components of the
disease process would also be slow. This has turned out to be incorrect. As we
show, modeling combined with appropriate experiments has revealed that HIV is a
dynamic disease encompassing a number of different time scales, running from hours
to days to weeks to months. We show how perturbation experiments, combined with
mathematical modeling, led to the uncovering of these different time scales and to
the recognition that these time scales correspond to important biological processes
underlying HIV infection. Further, the analysis of such in vivo perturbation exper-
iments has helped elucidate the nature of various reservoirs for the virus and raised
for serious discussion the intriguing possibility that prolonged therapy with highly
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Fig. 1.1 Time course of HIV infection in a typical infected adult. The viral load and level of
antibodies against HIV are depicted. The early peak in viral load corresponds to primary
infection. Primary infection is followed by a long asymptomatic period during which the
viral load changes little. Ultimately, the viral load increases and the symptoms of full-
blown AIDS appear. On average, the time from infection to AIDS is 10 years, but still
some patients progress to AIDS much more rapidly, while others progress more slowly. The
graphs here are only meant to be schematic and are not data from any particular patient.

effective drug combinations might ultimately lead to virus eradication. The fact that
HIV replicates rapidly, producing on average 1010 viral particles per day, which was
uncovered by this approach, led to the realization that HIV was evolving so rapidly
that treatment with a single drug was bound to fail. This realization helped speed
the recommended form of treatment from monotherapy to combination therapy em-
ploying three or more drugs, and has had a major impact in extending people’s lives.
While virus eradication no longer seems like an easily attainable goal even for patients
on combination therapy, modeling still brought home an important practical message:
patients should continue taking antiretroviral drugs for a period of at least 2–3 years
after virus is no longer detectable in blood. Lastly, mathematical modeling, which
at one time was essentially ignored by the experimental AIDS community, has in the
last three years become an important tool, and almost all of the major experimental
groups are now collaborating with a theorist.

In order to understand the successes of modeling, we begin with an overview of
the dynamical features of HIV infection as understood in the early 1990s. The typical
course of HIV infection as might have been seen in a textbook [67] or review article
is shown in Figure 1.1. Immediately after infection the amount of virus detected in
the blood, V , rises dramatically. Along with this rise in virus, flu-like symptoms
tend to appear. After a few weeks to months the symptoms disappear and the virus
concentration falls to a lower level. An immune response to the virus occurs and
antibodies against the virus can be detected in the blood. A test to detect these
antibodies is used to determine if a person has been exposed to HIV. If the antibodies
are detected, a person is said to be HIV-positive.
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Fig. 1.2 Plasma viral load before and after treatment with a protease inhibitor, showing rapid decline
in viral concentrations after treatment initiation at t = 0. Each HIV-1 virus particle
contains 2 RNA molecules. Data is from 2 out of 20 patients studied in [23]. All 20
patients exhibited similar rapid declines (see Table 2.1).

The level the virus falls to after “primary infection” has been called the set-
point. The viral concentration deviates little from this set-point level for many years;
however, the concentration of CD4+ T cells measured in blood slowly declines. This
period in which the virus concentration stays relatively constant but in which the T
cell count slowly falls is typically a period in which the infected person has no disease
symptoms. The asymptomatic period can last as long as 10 years.

The question then arises: What is happening during this asymptomatic period?
Many investigators believed that the virus was quiescent or latent during this period,
as in other viral diseases such as herpes infection, in which the virus hides out in nerve
ganglia and only becomes active for brief periods. One method of determining whether
the virus is active is to perturb the host-virus system during the asymptomatic period.
Fortunately, means are available for doing so.

In 1994, when the modeling work to be discussed in this review began, potent
antiretroviral drugs (the protease inhibitors) were being developed and tested. Giving
an antiretroviral drug to a patient is a means of perturbing the system. Working with
David D. Ho of the Aaron Diamond AIDS Research Center, we examined the response
of 20 patients to a protease inhibitor, ritonavir. The results were dramatic. As shown
in Figure 1.2, the amount of virus measured in blood plasma fell rapidly once the
drug was given.
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2. The Simplest HIV Dynamic Model. Although previous modeling work had
generated a large number of intricate models of HIV dynamics within individual pa-
tients, the data obtained from this perturbation experiment would not support the
application of a complicated model. The data appeared to show that the virus con-
centration fell exponentially for a short period after a patient was placed on a potent
antiretroviral drug. Thus, the following model was introduced:

dV

dt
= P − cV,(2.1)

where P is an unknown function representing the rate of virus production, c is a
constant called the clearance rate constant, and V is the virus concentration. If the
drug completely blocks viral production, i.e., causes P = 0, then the model predicts
that V will fall exponentially, i.e., V (t) = V0e

−ct, where t = 0 is the time therapy
is initiated and V (0) = V0. Plotting ln V versus t and using linear regression to
determine the slope allowed us to estimate c and the half-life of virus in the plasma,
t1/2 = ln 2/c.

The notion that virus concentration attains a set-point suggests that before ther-
apy began, the patient was in a quasi-steady state in which dV/dt = 0. If this were
the case, as our data on these patients suggested (see Figure 2.1 for three examples),
then by knowing c and the initial virus concentration V0, we could compute the viral
production rate before therapy, i.e., P = cV0. Measuring V0 for each patient, then
multiplying this concentration by the fluid volume in which virus is expected to be
found, allowed us to compute the total rate of virus production in these patients.
These results are summarized in Table 2.1. The rates are minimal estimates because
they are based on the hypothesis that the drug completely blocks virus production
and hence that the kinetics after drug therapy is initiated is a perfect exponential
decline. Although the data appeared to fall exponentially, we knew on theoretical
grounds that this could not be the case, because the drug could not instantly block
all viral production. Thus, our experiments measured the rate of virus clearance in
the face of some residual production, and the slope of the viral decline was not the true
clearance rate constant, but only a lower bound. The more refined models given below
will illustrate this point. Further, we believe that the viral clearance we measured was
a consequence of biological processes in place before the drug was given, since similar
rates of decline have been observed with different drugs and with different patient
populations (cf. [9, 65]).

3. A Model that Incorporates Viral Production. HIV infects cells that carry the
CD4 cell surface protein as well as other receptors called coreceptors. Cells that are
susceptible to HIV infection are called target cells. The major target of HIV infection
is the CD4+ T cell. After becoming infected, such cells can produce new HIV virus
particles, or virions. Thus, to model HIV infection we introduce a population of
uninfected target cells, T , and productively infected cells, T ?. Later, we shall discuss
another state of infection of a cell called latent infection, in which a cell can be infected
by the virus but the cell does not produce new virus particles.

The population dynamics of CD4+ T cells in humans is not well understood.
Nevertheless, a reasonable model for this population of cells is

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT,(3.1)
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Fig. 2.1 The concentration of HIV-1 RNA, measured in plasma, versus time for three patients before
initiation of antiretroviral therapy [23].

where s represents the rate at which new T cells are created from sources within
the body, such as the thymus. T cells can also be created by proliferation of exist-
ing T cells. Here we represent the proliferation by a logistic function in which p is
the maximum proliferation rate and Tmax is the T cell population density at which
proliferation shuts off. While there is no direct evidence that T cell proliferation is
described by the logistic equation given above, there are suggestions that the prolif-
eration rate is density-dependent with the rate of proliferation slowing as the T cell
count gets high [23, 58]. Lastly, T cells, like all cells, have a natural lifespan. Here dT
is the death rate per T cell. If the population ever reaches Tmax it should decrease;
thus we impose the constraint dTTmax > s [54]. Equation (3.1) has a single stable
steady state given by

T̄ =
Tmax

2p

[
p− dT +

√
(p− dT )2 +

4sp
Tmax

]
,(3.2)

where the overbar denotes a steady state value. In [54], a discussion of biologically
realistic choices for the parameters p, dT , s, and Tmax is given.

In the presence of HIV, T cells become infected. The simplest and most common
method of modeling infection is to augment (3.1) with a “mass-action” term in which
the rate of infection is given by kV T , with k being the infection rate constant. This
type of term is sensible, since virus must meet T cells in order to infect them and
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Table 2.1 Summary of patient CD4 counts, viral load, and deduced HIV-1 kinetics during the pre-
treatment quasi-steady state. Adapted from [23]. (A virion is a virus particle.)

CD4 Plasma viremia V0 Half-life Minimum production
count (virions per of virus, t1/2 and clearance, P = cV0

Patient (mm−3) ml×103) (days) (virions/day ×109)
301 76 193 2.3 0.6
302 209 80 2.6 0.3
303 293 41 3.3 0.1
304 174 121 2.5 0.5
305 269 88 2.1 0.5
306 312 175 1.3 1.3
308 386 185 1.5 1.5
309 49 554 2.4 1.9
310 357 15 2.7 0.1
311 107 130 2.4 0.5
312 59 70 2.3 0.3
313 47 100 1.3 0.9
401 228 101 1.7 0.5
402 169 55 2.5 0.2
403 120 126 2.2 0.7
404 46 244 2.6 1.1
406 490 18 2.2 0.1
408 36 23 2.8 0.1
409 67 256 1.5 2.1
410 103 99 1.9 0.5

Range 36− 490 15− 554 1.3− 3.3 0.1− 2.1
Mean 180± 46 134± 40 2.1± 0.4 0.7± .1

the probability of virus encountering a T cell at low concentrations (when V and
T motions can be regarded as independent) can be assumed to be proportional to
the product of their concentrations. Thus, in what follows, we shall assume that
infection occurs by virus, V , interacting with uninfected T cells, T , causing the loss of
uninfected T cells at rate −kV T and the generation of infected T cells at rate kV T .

In principle, the rate of infection should saturate at high virus concentration.
However, during HIV infection the concentration of virus never gets high compared
to the number of T cells. In fact, in the blood of an HIV-1-infected patient a typical
ratio might be 1:1 (e.g., 105 virions/ml and 100 CD4+ T cells/µl). Similarly, it has
been estimated that there are approximately 1011 virions and 1011 CD4+ T cells in
lymphoid tissue [6]. Thus, we ignore saturation effects. Infection might also occur
by cell-to-cell transmission, where an infected cell, T ?, directly interacts with an
uninfected cell, T . There is little evidence that such direct cell-to-cell infection is a
major pathway in vivo, and we shall ignore this mode of infection here.

The models that we focus on are one-compartment models in which V and T are
identified with the virus concentration and T cell counts measured in blood. Infection
is not restricted to blood, and in fact, the vast majority of CD4+ T cells are in
lymphoid tissue. However, the available data suggests that the concentration of virus
and CD4+ T cells measured in blood is a reasonable reflection of their concentrations
throughout the body (cf. [19, 51]), as one would expect for a system in equilibrium.
Clearly transients may develop when this is no longer the case, say, due to an acute
infection. Multicompartment models are being developed (cf. [28, 31]) that may
eventually provide further insights into disease dynamics.
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With the simple mass-action infection term, the rates of change of uninfected
cells, T , productively infected cells, T ?, and virus, V , are

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kV T,(3.3)

dT ?

dt
= kV T − δT ?,(3.4)

dV

dt
= NδT ? − cV.(3.5)

The various terms and parameters are described below.
The probability that an infected (or uninfected) lymphocyte will die as a function

of time or cell age is not known. Thus, we have made the simplest possible assumption,
that is, that the rate of death per cell is a constant dT for uninfected cells and δ for
infected cells. This is equivalent to the assumption that the probability of cell death
at time t is given by an exponential distribution with an average cell lifetime of 1/dT
for uninfected cells and 1/δ for infected cells. Other models might incorporate a
density-dependent rate of death or use some other intrinsic probability distribution
for cell death. For example, one might imagine that the probability of cell death is
given by a gamma distribution, which is used to represent multistage processes and
can be viewed as suggesting that cell death only occurs after a number of subprocesses
are completed. Because distributions like the gamma distribution are specified by two
or more parameters, they are not useful at this stage in modeling, where there is no
basis for choosing these parameters or any possibility of identifying them from data.
Later we will show that from data we can estimate the mean, 1/δ, of the probability
distribution describing cell death.

In the presence of HIV, there are two types of T cells: uninfected and productively
infected. Thus, it would be reasonable to change the logistic proliferation term to
pT (1 − T+T?

Tmax
). However, the proportion of productively infected cells is very small,

on the order of 10−4 to 10−5 of T cells [7], and thus it is sensible to ignore this
correction.

Finally, virus is produced by productively infected cells. Here we have assumed
that on average each productively infected cell produces N virions during its lifetime.
Since the average lifetime of a productively infected cell is 1/δ, the average rate of
virion production is π = Nδ. In some models it is useful to introduce the parameter
π, while for other purposes it is easier to think about (and measure) the total number
of virions produced by a cell during its lifetime, N .

In this equation we have ignored the loss of virus due to infection of a cell. Each
time a cell is infected, at least one virion must enter, and thus one might add the
term −kV T to (3.5). In examining the rate of clearance of virions from patients with
different T cell counts, we did not find any statistically significant correlation with
the T cell count [23]. Thus, it appears as if the term kTV is small compared to cV
in the average HIV-infected patient. Also, if T is approximately constant, then one
can define a new clearance rate constant, c′ = c+ kT , that incorporates loss of virus
by infection and other clearance processes. For these reasons we shall not include a
−kV T term in (3.5).

The mechanism of virus clearance from the blood is not known. In fact, binding
to cells may be an important part of the clearance mechanism. Thus, one might want
to add not only a −kV T term to equation (3.5) but similar terms for the binding to
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other cell populations, e.g., red blood cells, platelets, monocytes, etc. However, as
long as these cell populations do not change substantially, they may be considered
constants, and hence terms like k1[red blood cell] + k2 [platelet] + · · · may all be
lumped into the constant c.

3.1. Analysis. Before therapy is begun, viral loads are relatively constant. Thus
dV/dt = 0, which implies

NδT ?0 = cV0,(3.6)

where the subscript 0 is used to denote a pretreatment quasi-steady state value.
Because V is relatively constant for weeks before therapy, this implies that T ? must
also be relatively constant (assuming that the various model parameters N , c, and δ
are also constant). For T ? to be constant, we assume dT ?/dt = 0 on this same time
scale, and thus

kV0T0 = δT ?0 .(3.7)

Generally, the concentration of productively infected cells, T ?, is not measured in
patients. However, T cell counts and viral loads are monitored, and it is reasonable
to assume that the CD4+ T cell concentration and the viral load are known. The
vast majority of cells susceptible to HIV infection are CD4+ T cells [52], and we shall
assume that T0 is equal to the CD4+ T count at the start of therapy. Using equation
(3.7) one can then determine T ?0 . Thus, for patients in quasi-steady state before
antiretroviral therapy begins, V0, T0, and T ?0 provide initial conditions for equations
(3.3)–(3.5).

Equations (3.6) and (3.7) imply that for V and T ? to be in quasi-steady state,

NkT0 = c.(3.8)

This equation will be important in what follows. For example, it implies that patients
with different quasi-steady state T cell counts must have differences in one of the
parameters N , k, or c. Further, it suggests that disease progression, characterized by a
lowering in the CD4+ T cell count, should occur if N or k increases with time. Models
incorporating these two hypotheses for disease progression have been developed in
which it is assumed that within patients, viral evolution drives parameter changes (cf.
[11, 50, 54, 59]).

The T cell count changes in HIV-1 infected patients, but on a time scale of years
(Figure 1.1). If we assume that on a scale of weeks the T cell count as well as V and
T ? do not change, then we can compute a full pretreatment steady state. This yields

T0 =
c

Nk
, T ?0 =

cV0

Nδ
, and V0 =

sN

c
+
p− dT
k

− pc

Nk2Tmax
.(3.9)

Frequently throughout this paper, we shall examine the situation in which T =
constant = T0, but T ? and V vary according to equations (3.4) and (3.5), i.e., we
analyze the system

dT ?

dt
= kT0V − δT ?,

dV

dt
= NδT ? − cV.

(3.10)
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Fig. 3.1. Phase portraits for the three different ranges of the virus clearance rate constant c.

Looking in the phase-plane (Figure 3.1), we see that the equations dT ?/dt = 0
and dV/dt = 0 define the straight lines

V =
δ

kT0
T ?,

V =
Nδ

c
T ?,

(3.11)

which either intersect at the origin (Figure 3.1, top two panels) or, if c = NkT0,
coincide (Figure 3.1, bottom panel).

In the general case, when c 6= NkT0, the origin is a stable fixed point if c > NkT0
and a saddle point when c < NkT0. This can be seen from the phase-plane or by
computing the eigenvalues about the origin. The characteristic equation is

λ2 + (δ + c)λ+ δ(c−NkT0) = 0,
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with solutions

λ1 = −δ + c

2
+

1
2

√
(δ + c)2 − 4δ(c−NkT0),

λ2 = −δ + c

2
− 1

2

√
(δ + c)2 − 4δ(c−NkT0).

(3.12)

If c < NkT0, then λ1 > 0, λ2 < 0, the origin is a saddle point, and the virus
will grow without bound. When c > NkT0, the eigenvalues are both negative and
the virus will ultimately become extinct. Heuristically, the condition c > NkT0
can be viewed as implying that the rate of clearance of the virus is greater than
its rate of production. At the time of initial infection it is reasonable to assume that
T = constant. Thus, if one is infected with a virus with parameters Nk, such that c >
NkT0, this theory predicts that the virus will be eliminated and the infection will not
take. Interestingly, when health care workers are stuck by needles contaminated with
blood from AIDS patients, the frequency at which such people become HIV positive is
very low, maybe 1 in 200 such incidents. Similarly, not every sexual encounter between
an HIV-infected person and an uninfected partner results in detectable infection. Both
of these observations are consistent with the prediction that not all infections take.
However, the ability to clear the virus by a person diagnosed as being infected should
not be taken as an established fact. A variety of other experiments have shown that
if the virus load ever gets high enough to be reliably measured, i.e., high enough to
reliably establish that a person has been infected, then it is extremely unlikely that
the virus will ever be cleared spontaneously.

When c = NkT0, the two lines in the phase-plane coincide and there exists a line
of equilibria with eigenvalues λ1 = −(δ + c) and λ2 = 0; no single point is stable,
but rather the entire line is a set of possible equilibria. If a perturbation drives the
system off the line, then the system will return to another equilibrium point on the
line. Thus, the state of the system could wander along the line. If c were not exactly
equal to NkT0 but, say, somewhat smaller, then this wandering would slowly lead to
an increase in virus. While the existence of a quasi-steady state value for the viral
load is well established, there is still a tendency for the viral load to increase, possibly
by a few percent a year. Thus, while c = NKT0 is the condition for a quasi-steady
state, slight variations from this will keep the viral load trajectories between the two
lines given by (3.11).

The finding of a manifold of equilibria when c = NkT0 is noteworthy because
it allows for the possibility of the stable maintenance of productively infected cells,
T ?, and virus, V , at finite positive values. Further, depending on the parameters
characteristic of the virus and host, the equilibrium can differ from one patient to the
next. This is also true in the more complex three-dimensional system in which the
target cell population is allowed to vary. However, because the T cell level in patients
generally changes very slowly, substantial insight can be gained from analyzing the
simpler two-dimensional system with T held constant and the parameter constraint
c = NkT0.

In much of what follows we shall examine the effects of perturbing this two-
dimensional system by applying drugs that affect viral replication or viral infectivity.
We shall show that analyzing data obtained for a period of one to two weeks following
initiation of therapy, so that the assumption T = constant = T0 is reasonable, has
yielded important insights into the dynamics of HIV infection.
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4. HIV Biology and Drug Therapy. HIV is an RNA virus. However, when it
infects a cell, the enzyme reverse transcriptase (RT), which it carries, makes a DNA
copy of its RNA genome. This DNA copy is then integrated into the DNA of the
infected cell with the help of another virally encoded enzyme, integrase. The viral
DNA, called the “provirus,” is then duplicated with the cell’s DNA every time the
cell divides. Thus a cell, once it contains integrated provirus, remains infected for
life. The provirus may also remain in the cytoplasm of the cell in unintegrated form.
Ultimately this DNA is degraded and thus cells with unintegrated provirus are only
transiently infected. A model incorporating transient infection has been developed
[15] but will not be discussed here.

Within a T cell the provirus can remain latent, giving no sign of its presence for
months or years [24, 16, 69]. Stimulation of the T cell by an antigen or a mitogen can
lead to the production of new virus particles that bud from the surface of the infected
cell. The budding can take place slowly, sparing the host cell, or it can take place
very rapidly, possibly leading to the lysis of the T cell [35].

When new virus particles are produced by an infected cell, the viral DNA is read
and viral RNA is made. Some of this RNA is kept as a full-length transcript of the
viral DNA and is used as the genetic material packaged into new virus particles. Other
RNA copies play the role of messenger RNA and are used as templates for making
viral proteins. Without going into detail, many viral proteins, including the enzymes
RT, protease, and integrase, are made as one long “polyprotein,” which must then be
cleaved by viral protease into single proteins.

Current drug therapies for HIV-infected patients involve inhibiting either RT or
HIV protease. If RT is inhibited, HIV can enter a cell but will not successfully infect
it; a DNA copy of the viral genome will not be made and the cell will not make
viral proteins or virus particles. The viral RNA that enters the cell is not stable and
will degrade. If HIV protease is inhibited, cleavage of the viral polyprotein will not
occur, and viral particles will be made that lack functional RT, protease, and integrase
enzymes. The net effect of blocking HIV protease is that defective or “noninfectious”
viral particles are made. The third viral enzyme, integrase, is also a potential target
of drug therapy, and a number of pharmaceutical companies are trying to develop
integrase inhibitors.

5. Models of Drug Therapy. Patients who are in quasi-steady state can be given
RT inhibitors, protease inhibitors, or a combination of the two in order to reduce the
amount of virus in their bodies. Models have been developed for all three types of
therapy.

5.1. RT Inhibitors. Our basic model, (3.3)–(3.5), is

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kV T,(5.1)

dT ?

dt
= kV T − δT ?,(5.2)

dV

dt
= NδT ? − cV.(5.3)

An RT inhibitor blocks infection and hence reduces k. In the presence of a perfect
inhibitor, k = 0 and
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dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT,(5.4)

dT ?

dt
= −δT ?,(5.5)

dV

dt
= NδT ? − cV.(5.6)

The T cell dynamic equations become uncoupled from the viral dynamic equation.
Thus, the model predicts that if viral infection has not changed any of the parameters
characterizing T cell dynamics, the T cell population should eventually recover and
return to its preinfection steady state level.

Productively infected T cells are no longer generated and their number will decay
exponentially; i.e., T ?(t) = T ?0 e

−δt. The amount of free virus will also decay but
with more complex double exponential behavior, V (t) = V0e

−ct + NδT?0
c−δ (e−δt − e−ct).

Assuming quasi-steady state before treatment, T ?0 = kV0T0/δ and NkT0 = c, yields

V (t) =
V0

c− δ [ce−δt − δe−ct] ,(5.7)

a formula presented in [65]. Note that c and δ appear symmetrically in this formula,
and thus if measurements of V (t) are made and compared with this theoretical pre-
diction, the lifetimes of infected cells and free virus cannot be uniquely identified.
However, the formula does show that drug therapy should reduce viral load and that
the dynamics of virus loss will reflect a combination of viral clearance and loss of
productively infected cells.

RT inhibitors, like other drugs, are not perfect. Thus, a more accurate model for
the action of an RT inhibitor is

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − (1− ηRT )kV T,(5.8)

dT ?

dt
= (1− ηRT )kV T − δT ?,(5.9)

dV

dt
= NδT ? − cV,(5.10)

where ηRT is the “effectiveness” of the RT inhibitor. If ηRT = 1, the inhibition is
100% effective, whereas if ηRT = 0, there is no inhibition. If we assume that for a
short period after therapy is initiated, T = constant = T0, then equations (5.9) and
(5.10) become linear and can be solved. The eigenvalues of this homogeneous linear
two-dimensional system are

λ1,2 = −δ + c

2
± 1

2

√
(δ + c)2 − 4δ[c− (1− ηRT )NkT0].

If we assume the patient was in quasi-steady state before treatment began, then
NkT0 = c and

λ1,2 = −δ + c

2
± 1

2

√
(δ + c)2 − 4ηRT δc.(5.11)
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By letting c = εδ, ε > 0, it is easy to show that (δ + c)2 ≥ 4δc, and hence since
0 < ηRT ≤ 1, the two eigenvalues are real, negative, and distinct. Thus, as t→∞, T ?

and V both approach zero. Hence, if an RT inhibitor is given, ηRT > 0, and the only
posttreatment steady state is the origin. Moreover, this “uninfected” posttreatment
steady state is stable. This conclusion that the virus is eradicated, however, is based on
the unrealistic assumption that T remains constant as t→∞. In general, one expects
that as the virus concentration decreases, CD4+ T cells will increase in number, as
seen in clinical trials [23]. In such circumstances, ηRT will need to be larger than
some positive critical value in order for the virus to be eliminated [66].

5.2. Protease Inhibitors. Protease inhibitors cause infected cells to produce non-
infectious virions. Virions that were created prior to drug treatment remain infectious.
Thus, in the presence of a protease inhibitor, we consider two types of virus particles:
infectious virions at concentration VI and noninfectious virions at concentration VNI .
This notation is somewhat imprecise, since even in the absence of a protease inhibitor,
not every virus particle is infectious. Thus, to be more precise, VI denotes the pop-
ulation of virus particles that have not been influenced by a protease inhibitor and
hence had their polyproteins cleaved, whereas VNI denotes the population of virus
particles with uncleaved polyproteins. Further, we let V = VI +VNI be the total virus
concentration.

After a 100% effective protease inhibitor is given, the equations of our basic model
(5.1) become

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kVIT,

dT ?

dt
= kVIT − δT ?,

dVI
dt

= −cVI ,

dVNI
dt

= NδT ? − cVNI .

(5.12)

Before therapy is initiated, VNI(0) = 0 and all virus belongs to the “infectious pool”;
i.e., VI(0) = V0. Thus, VI(t) = V0e

−ct, and as infectious virus decays, the uninfected
T cell population, T (t), increases, ultimately returning to the steady state it had in
the absence of viral infection (again assuming that infection has not caused any of
the parameters characterizing the T cell population to change).

Over a short period of time, immediately after therapy is initiated, one can assume
that T = constant = T0. Making this assumption and substituting VI(t) into the
differential equation for T ?, one obtains a linear equation with solution

T ?(t) = T ?(0)e−δt +
kT0V0(e−ct − e−δt)

δ − c .(5.13)

Assuming T ? is in quasi-steady state before initiation of therapy, T ?(0) = kV0T0/δ
and (5.13) becomes

T ?(t) = kV0T0

[
ce−δt − δe−ct
δ(c− δ)

]
.(5.14)
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Table 5.1 Summary of HIV-1 clearance rate, infected cell loss rate, and virion production rate for
three patients. Baseline values are measured from one week prior to administration of
drug.

Baseline value Virus clearance Infected cell loss
Patient CD4 cell Plasma

virus
Pharm.
delay c t1/2 δ t1/2

Total virus
production

number (mm−3) (103/ml) (hours) (day−1) days (day−1) days (109/day)
102 16 294 2 3.8 0.2 0.3 2.7 12.9
103 408 12 6 2.7 0.3 0.7 1.0 0.4
104 2 52 2 3.7 0.2 0.5 1.4 2.9
105 11 643 6 2.1 0.3 0.5 1.3 32.1
107 412 77 2 3.1 0.2 0.5 1.4 3.0

Mean 170 216 3.6 3.1 0.2 0.5 1.6 10.3
±SD 196 235 2.0 0.6 0.1 0.1 0.6 11.7

Substituting this value of T ?(t) into the differential equation for VNI yields a linear
time-varying equation with solution

VNI(t) =
cV0

c− δ

[
c

c− δ
(
e−δt − e−ct

)
− δte−ct

]
,(5.15)

where we have used the quasi-steady state condition NkT0 = c. Finally, the total
concentration of virus, which is the easily measured quantity, is given by

V (t) = V0e
−ct +

cV0

c− δ

[
c

c− δ
(
e−δt − e−ct

)
− δte−ct

]
.(5.16)

Equation (5.16) has been used to analyze patient data [55]. The protease inhibitor
ritonavir was administered orally (1200 mg/day) to five HIV-infected patients, whose
baseline CD4 cell counts and viral loads are shown in Table 5.1. HIV-1 RNA levels in
plasma were measured after treatment at frequent intervals. Each HIV virus particle
contains two RNA molecules, and thus the HIV-1 RNA level is a direct measure of the
virus concentration, V . As shown in Figure 5.1, each patient responded with a similar
pattern of viral decay, with an initial lag followed by an approximately exponential
decline in plasma viral RNA.

After ritonavir was administered, a delay in its antiviral effect was expected due
to the time required for drug absorption, distribution, and penetration into the target
cells. This pharmacokinetic delay could be estimated by the time elapsed before the
first drop in the titer of infectious HIV-1 in plasma (Table 5.1; Figure 5.2). How-
ever, even after the pharmacokinetic delay was accounted for, a lag of ' 1 day was
observed before the level of plasma viral RNA fell (Figure 5.1). This additional delay
is consistent with the mechanism of action of protease inhibitors, which render newly
produced virions noninfectious but which inhibit neither the production of virions
from already infected cells nor the infection of new cells by previously produced in-
fectious virions. These features of the action of a protease inhibitor are incorporated
into our model and produce a “shoulder region” in which there is little initial viral
decay.

Using nonlinear regression analysis, we estimated c, the viral clearance rate con-
stant, and δ, the rate of loss of virus-producing cells, for each of the patients by
fitting (5.16) to the plasma HIV-1 RNA measurements after an adjustment of t = 0
was made to account for the pharmacological delay (Table 5.1). The curves generated
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Fig. 5.1 Data from three patients (?) compared to the model predictions (solid lines). Parameter
values corresponding to the best-fit theoretical curves are listed in Table 5.1.

from (5.16), using the best-fit values of c and δ, gave an excellent fit to the data for
all patients (Figure 5.1).

Clearance of free virions was the more rapid process, occurring on a time scale of
hours. The values of c ranged from 2.1 to 3.8 day−1 with a mean of 3.1± 0.6 day−1

(Table 5.1). The corresponding half-life, t1/2, of free virions (t1/2 = ln 2/c) ranged
from 0.2 days to 0.3 days with a mean of 0.24 ± 0.06 days (∼ 6 hours). Because
data was collected every 2 hours for the first 6 hours and then every 6 hours until
day 2, there were not very many data points contributing to the estimate of c, and
large confidence intervals resulted [55]. In order to confirm that viral clearance was
as rapid as predicted by this model, an additional experiment was done in which the
concentration of infectious virions in plasma, VI , was measured in the one patient
with the highest initial viral load. Theory predicted that VI(t) = V0e

−ct. For this
patient, as shown in Figure 5.2, the infectivity of the patient’s plasma when plotted
on a logarithmic scale fell linearly with time, and the slope of the curve corresponded
to an estimated t1/2 = 0.23 days, thus confirming the estimate of c.

The loss of virus-producing cells, as estimated from the fit of (5.16) to the HIV-1
RNA data, was slower than that of free virions, with values of δ ranging from 0.3 to 0.7
day−1, and a mean of 0.5±0.1 day−1, corresponding to t1/2 values between 1.0 and 2.7
days, with a mean of 1.6±0.6 days (Table 5.1). Note that the lifespans of productively
infected cells, 1/δ, were not dramatically different among the study subjects, even
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Fig. 5.2 Best fit of the equation for VI(t) to plasma infectivity data obtained from patient 105. The
infectivity of the plasma is proportional to the number of infectious virions it contains. See
[55] for further experimental details.

though patients with low CD4 lymphocyte counts generally had decreased numbers
of virus-specific cytotoxic T cells that in principle can kill productively infected T
cells [5].

5.3. Viral Production. At steady state, the production rate of virus must equal
its clearance rate, cV0. Using the estimate of c and the pretreatment viral level, V0,
we can obtain an estimate for the rate of viral production before protease inhibitor
administration. The product cV0 gives the number of virions produced per ml of
plasma per day. To compute the total number of virions produced per day we multiply
cV0 by the total fluid volume that virions are expected to be suspended in. A typical
70 kg man has a fluid volume of about 15 liters. Table 5.1 gives an estimate of
each patient’s viral production based on a calculation of plasma and extracellular
fluid volumes using the patient’s body weight. The total daily viral production and
clearance rates ranged from 0.4 × 109 to 32.1 × 109 virions per day, with a mean
of 10.3 × 109 virions per day released into the extracellular fluid (Table 5.1). These
estimates are still minimal estimates, since they are based on the assumption that
ritonavir totally blocked all infectious virus production. Additional infection and viral
production is probably occurring, and thus the true viral clearance rate is expected to
be higher than our estimate. Further, not all virus that is produced is in extracellular
fluid, and the estimate does not take this into account.

5.4. Imperfect Protease Inhibition. Protease inhibitors are not perfect drugs.
Let ηPI be the effectiveness of a protease inhibitor or combination of protease in-



20 ALAN S. PERELSON AND PATRICK W. NELSON

hibitors in blocking production of infectious virions. Then (5.12) can be modified to
the form,

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kVIT,

dT ?

dt
= kVIT − δT ?,

dVI
dt

= (1− ηPI)NδT ? − cVI ,

dVNI
dt

= ηPINδT
? − cVNI .

(5.17)

We analyze this model when T = constant = T0. We first solve the two-
dimensional linear subsystem for T ? and VI . Assuming a pretreatment steady state,
so that c = NkT0, we obtain

T ?(t) =
V0kT0

λ2 − λ1

[
λ2 + cηPI
λ1 + δ

eλ1t − λ1 + cηPI
λ2 + δ

eλ2t

]
,

VI(t) =
V0

λ2 − λ1
[(λ2 + cηPI)eλ1t − (λ1 + cηPI)eλ2t],

(5.18)

where

λ1,2 = −c+ δ

2
± 1

2

√
(c+ δ)2 − 4ηPIδc.(5.19)

These eigenvalues are identical in form to those derived for the RT inhibitor model in
section 5.1. Thus, the eigenvalues are real, distinct, and negative.

Substituting these solutions for T ? and VI into the differential equation for VNI
and solving, one finds

VNI(t) =
NηPIδkT0V0

λ2 − λ1

[
λ2 + cηPI

(λ1 + δ)(λ1 + c)
eλ1t − λ1 + cηPI

(λ2 + δ)(λ2 + c)
eλ2t

−
(

λ2 + cηPI
(λ1 + δ)(λ1 + c)

+
λ1 + cηPI

(λ2 + δ)(λ2 + c)

)
e−ct

]
.

This equation can be simplified by noticing that according to the characteristic equa-
tion for the two-dimensional T ? and V subsystem,

λ2 + (c+ δ)λ+ ηPIδc = 0,

or

cδ =
(λi + δ)(λi + c)

1− ηPI
, i = 1, 2.

Thus,

VNI(t) =
V0ηPI

(1− ηPI)

[
(λ2 + cηPI)eλ1t − (λ1 + cηPI)eλ2t

(λ2 − λ1)
− e−ct

]
.(5.20)
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Adding VI and VNI gives the total virus

V (t) =
V0

(1− ηPI)

[
(λ2 + cηPI)eλ1t − (λ1 + cηPI)eλ2t

(λ2 − λ1)
− ηPIe−ct

]
.(5.21)

If the drug effectiveness ηPI is close to 1, then the 1−ηPI term in the denominator
can cause difficulties in numerical work. This singularity can be avoided by using the
characteristic equation and the steady state condition NkT0 = c to replace 1 − ηPI
with (λ1 + c)(λ1 + δ)/δc.

While this solution is more complex than that given by (5.16), it reduces to the
simpler form when ηPI = 1. This can be seen by using the substitution for 1 − ηPI
given above coupled with l’Hôpital’s rule, and noting that when ηPI = 1, λ1 = −δ
and λ2 = −c.

5.4.1. Patients Not in Quasi-Steady State. It is not necessary to assume that
patients are in quasi-steady state prior to treatment initiation, hence c 6= NkT0. This
assumption gives a more general characteristic equation with eigenvalues,

λ1,2 = −δ + c

2
± 1

2

√
(δ − c)2 + 4(1− ηPI)NkT0δ.

Notice that these eigenvalues differ from (5.19) and provide a means for studying the
model’s predictions for cases when patients are not at a steady state when treatment
is initiated.

A bifurcation occurs at

c = NkT0(1− ηPI),

or equivalently at

ηPI = 1− c

NkT0
.

If ηPI > 1 − c
NkT0

, then both eigenvalues are negative and the virus is predicted to
be cleared from the plasma. If ηPI < 1 − c

NkT0
then therapy will not be effective

and the virus will continue to grow. Notice that if ηPI = 1, then, as we have already
shown, the stability analysis predicts the virus will always be eliminated since the
eigenvalues become λ1 = −c, λ2 = −δ, λ3 = −c. For ηPI = 1 the solution (5.16)
contains a secular term, which for small enough values of c allows for a growth in the
viral population before decaying to zero. The decay of V (t) is monotonic if c ≥ NkT0
and when c < NkT0, the virus is increasing when therapy is initiated, and will continue
to increase for a while under therapy, as illustrated in Figure 5.3.

5.4.2. Decay Slope Is Proportional to Drug Effectiveness: Approximation to
Largest Eigenvalue. Figure 5.4 shows how the rate of viral decay depends upon the
effectiveness of the protease inhibitor. Clearly, the higher the effectiveness of the drug
the faster the viral decay. To be more precise, we rewrite the largest eigenvalue from
(5.19) as

λ1 = −c+ δ

2
+
c+ δ

2

√
1− 4δcηPI

(δ + c)2 .

The parameter estimates in Table 5.1 show that c � δ, so that we can expand the
square root to obtain

λ1 ∼ −
c+ δ

2
+
c+ δ

2

(
1− 2δcηPI

(c+ δ)2 + . . .

)
,



22 ALAN S. PERELSON AND PATRICK W. NELSON

0 1 2 3 4 5 6 7 8
10

3

10
4

10
5

10
6

c = 2

c = 3

c = 5

days

H
IV

-1
 R

N
A

/m
l

Fig. 5.3 Prediction of viral decay under 100% effective protease inhibition (ηPI = 1) when the
assumption of a pretreatment steady state is not made. Here NkT0 = 2.56 day−1, and the
viral load V initially increases if the clearance rate c is less than this value.

and obtain λ1 ∼ −δcηPI/(c + δ) ∼ −δηPI . Thus, to first order, the initial slope
of viral decay after therapy initiation depends on the product of the death rate of
productively infected cells, δ, and the effectiveness of the therapy, ηPI . This is an
important result and it can be used to compare the effectiveness of different doses of
protease inhibitors [14].

5.5. The Effects of T Cell Recovery on Viral Dynamics. In the previous analyses
we have assumed that T = constant = T0. However, after antiretroviral therapy is
initiated, some recovery of T cells is observed. Data obtained in [23] suggests that
over a period of weeks the recovery of T cells can be described by either a linear or
exponential function of time, with no statistically significant difference between the
two functions. Recall that we have suggested that T cell dynamics can be summarized
by the equation

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kVIT.

After therapy is initiated VI(t) falls rapidly (for a perfect protease inhibitor, VI(t) =
V0e
−ct), and thus after a few days the term −kVIT should be negligible. T cell

replacement can be due to the source s, which incorporates the generation of new
cells in the thymus and their export into the blood and the transport of already
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Fig. 5.4 Plot showing the viral decay for different efficacies of the protease inhibitor from (5.21).
As predicted in section 5.4.2, the slope of the viral decay curve is proportional to the effec-
tiveness of the protease inhibitor, ηPI .

created T cells in tissues to the blood, or to proliferation of cells. If the source is the
major mechanism of T cell replacement, then we can approximate the T cell dynamics
by

dT

dt
= s− dTT

or

T (t) = T0 + αt,(5.22)

where α = s/dT . Patient data exhibiting a linear increase in CD4+ T cells is shown
in Figure 5.5.

We will first study this linear model and then a nonlinear model that incorporates
proliferation.

For T (t) given by (5.22), the model is

dT ?

dt
= kVI(αt+ T0)− δT ?,(5.23)

dVI
dt

= (1− ηPI)NδT ? − cVI ,(5.24)
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dVNI
dt

= ηPINδT
? − cVNI .(5.25)

Rewriting equations (5.23) and (5.24) as a second-order equation in VI gives

d2VI
dt2

+ (c+ δ)
dVI
dt

+ [δc− (1− ηPI)Nkδ(αt+ T0)]VI = 0.

The substitution VI(t) = e−
(c+δ)t

2 Y (t) yields

Y
′′

+ ζ (t)Y = 0,

where

ζ (t) = − (c+ δ)2

4
+ (δc− (1− ηPI)Nk (αt+ T0) δ) .

We can rewrite ζ(t) as ζ(t) = a+bt with a and b constants, and define a transformation
of the independent variable as s = a+ bt, to get

Yss − b2sY = 0,

which is an Airy equation for which analytical solutions are known. Hence, using
the initial conditions and numerical evaluation methods, we have an explicit solution
to compare with experimental data. Figure 5.6 shows the solution and its fit with
experimental data from three patients. Interestingly, explicitly taking the change in
CD4+ T cells that occurs over the course of one week of therapy into account has
little effect on the overall change in HIV-1 RNA.

Now consider the case where T is varying nonlinearly due to both a source and
proliferation. The equations we study are given by (5.17). Because the equations are
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Fig. 5.6 The effect of a linear increase in T on viral dynamics. Graph showing model predictions
plotted with patient data. The values for α were determined by linear regression analysis
of the change in CD4+ T cell levels for each patient after drug treatment (Figure 5.5).
The plotted curves are indistinguishable from the theoretical curves shown in Figure 5.1,
generated assuming T = constant = T0.

nonlinear we cannot solve them explicitly. However, we note that the solution trajec-
tories remain in the positive quadrant for all time since dT

dt |T=0 = s > 0, dT?

dt |T?=0 =
kVIT > 0, dVI

dt |VI=0 = (1− ηPI)NδT ? > 0, dVNI
dt |VNI=0 = ηPINδT

? > 0.
We next investigate the steady states of (5.17) and their stability.

5.5.1. The Steady States. There are two steady states, which we call noninfected
and infected. The noninfected steady state has no virus or infected cells present and
hence is (Tss1, 0, 0, 0), where

Tss1 =
Tmax

2p

[
p− dT +

√
(p− dT )2 +

4sp
Tmax

]
.(5.26)

The infected steady state is

Tss2 =
c

Nk(1− ηPI)
, V̄I =

s

kTss2
+
p(1− Tss2

Tmax
)− dT

k
,

T̄ ? =
cV̄I

δN(1− ηPI)
, V̄NI =

ηPI V̄I
1− ηPI

,
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where overbars again denote steady state quantities. In the absence of treatment,
ηPI = 0, and under this condition Tss2 reduces to the full pretreatment steady state
discussed in section 3. However, here we are interested in the steady state that obtains
under treatment, i.e., with ηPI 6= 0.

5.5.2. Stability of the Noninfected Steady State. The Jacobian matrix evalu-
ated at this steady state is

p(1− 2Tss1
Tmax

)− dT 0 −kTss1 0
0 −δ kTss1 0
0 δN(1− ηPI) −c 0
0 δNηPI 0 −c

 ,

with eigenvalues

λ1 = p

(
1− 2Tss1

Tmax

)
− dT ,

λ2,3 = −c+ δ

2
± 1

2

√
(c+ δ)2 − 4cδ + 4δNkTss1(1− ηPI),

λ4 = −c.

For stability we require λ1 < 0 or Tss1 >
(p−dT )Tmax

2p , a condition that is obviously
satisfied (see (5.26)). The eigenvalue with the negative square root term, λ3 < 0.
Lastly, for stability we require λ2 < 0, which is satisfied if

c+ δ >
√

(c+ δ)2 − 4cδ + 4δNkTss1(1− ηPI).

Hence for stability,

c > NkTss1(1− ηPI),

or

ηPI > 1− c

NkTss1
.

Thus, as one might expect, if the protease inhibitor is effective enough, the virus, in
principle, should be eradicated.

We can estimate the required effectiveness of treatment from this condition. Un-
der the assumption of a pretreatment steady state, c = NkT0, and the stability
condition becomes

ηPI > 1− T0

Tss1
.

Healthy individuals have T cell counts of about 1000/mm3. Thus, we can assume
Tss1 = 1000. Hence for a patient with a pretreatment T cell count of, say, T0 = 200,
we find that ηPI needs to be greater than 0.8. For a less advanced patient with a T
cell count of T0 = 500, ηPI need only be greater than 0.5. Thus, this analysis supports
the notion that patients should be started on antiretroviral drug therapy as early as
possible.
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5.5.3. Stability of the Infected Steady State. This steady state exists only if
V̄I > 0 or if

s

Tss2
+ p− dT − p

Tss2
Tmax

> 0.(5.27)

If the inequality (5.27) is replaced by an equality and the equation V̄I = 0 is solved for
Tss2, we obtain an expression identical to the expression for Tss1. Thus, at V̄I = 0, the
uninfected and infected steady states merge. Further, as Tss2 decreases, the left-hand
side of (5.27) increases. Hence, for V̄I > 0 and the infected steady state to exist,
0 < Tss2 < Tss1. This makes biological sense since in the infected steady state the
system should have fewer T cells than in the uninfected state.

Substituting the equation for Tss2 into the steady state equation for VI gives a
necessary condition for the infected steady state to exist, namely,

V̄I =
sN(1− nPI)

c
+
p
(

1− c
NkTmax(1−nPI)

)
− dT

k
> 0.(5.28)

The Jacobian matrix evaluated at this steady state is
p(1− 2T̄

Tmax
)− dT − kV̄I 0 −kT̄ 0
kV̄I −δ kT̄ 0
0 δN(1− ηPI) −c 0
0 δNηPI 0 −c

 ,

where T̄ = Tss2.
The characteristic equation computed from this Jacobian has one factor of λ+ c,

implying λ4 = −c. The other eigenvalues are the solutions of[
p

(
1− 2

T̄

Tmax

)
− dT − kV̄I − λ

]
[(c+λ)(δ+λ)−kT̄ δN(1−ηPI)]−kV̄IkT̄ δN(1−ηPI) = 0,

which, using the steady state value for T̄ , simplifies to

λ3 +Aλ2 +Bλ+ C = 0,

where

A = δ + c+
(

2pT̄
Tmax

)
− (p− dT ) + kV̄I ,

B = (δ + c)
(

2pT̄
Tmax

− (p− dT ) + kV̄I

)
,

C = cδkV̄I .

The Routh–Hurwitz conditions state that if A > 0, C > 0, and AB−C > 0, then
the eigenvalues have negative real parts. By inspection, C > 0. At steady state,

s+ (p− dT )T̄ − pT̄ 2

Tmax
= kV̄I T̄ .

Since s > 0,

(p− dT )T̄ − pT̄ 2

Tmax
< kV̄I T̄
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or

p− dT <
pT̄

Tmax
+ kV̄I ,

from which it follows that A > 0. The remaining condition necessary for stability of
the infected steady state is AB−C > 0. Note that A can be written as A = (δ+c+B1)
and that B can be written as B = (δ+ c)B1. Exploiting this form and noting that B1
contains the term kV̄I , one can show that AB = B1(δ+ c)2 +B2

1(δ+ c) > δckV̄I = C.
Hence the infected steady state, if it exists, is stable.

Note that if the infected steady state exists, Tss2 < Tss1, which we can rewrite as

c < NkTss1(1− ηPI).

To summarize, if c > NkTss1(1− ηPI) then the only nonnegative steady state is
the uninfected steady state and it is stable. Conversely, if c < NkTss1(1− ηPI) then
the uninfected state is unstable and the infected state exists and is stable. This is
equivalent to saying that there is a transcritical bifurcation when c = NkTss1(1−ηPI).

5.6. Viral Generation Time. Virologists are interested in determining how
rapidly virus replicates. One means of doing this is to estimate the generation time
of the virus. Here we shall define the generation time of HIV as the time it takes a
population of virions to infect cells and reproduce. Because a single virion may be
cleared before it infects a cell, we cannot simply average the generation times of indi-
vidual particles, for this average will diverge. The procedure we follow is to examine a
steady state population of V0 virions in a patient with T = constant = T0 target cells.
We then call the average time for this population to be replaced by a new population
of V0 virions the generation time, Tg. Thus, for example, if the original virions are all
colored red and newly produced virions are all colored blue, we compute the average
time until the appearance of the new generation of V0 blue particles. While virions
are not colored, the use of a 100% effective protease inhibitor causes newly produced
virions to be noninfectious, i.e., blue. Because we wish to calculate the time until
V0 noninfectious particles are created, we assume that such particles are not cleared
and that initially none exist. Thus, dVNI/dt = NδT ?, with VNI(0) = 0. Further, we
shall assume that at t = 0 there are no productively infected cells so that only new
infections are tracked. Thus, T ?(0) = 0, and from equation (5.13)

T ?(t) =
kT0V0

c− δ (e−δt − e−ct).(5.29)

At any given time, t, the mean number of “blue” virions produced from the initial
V0 “red” virions is VNI(t). If we let P (t) be the (cumulative) probability that a virion
is produced by time t, then P (t) = VNI(t)/V0. The probability density of a virus being
produced at time t is p(t) = dP/dt, and thus the average time of virion production is
given by

Tg =
∫ ∞

0
tp(t)dt =

1
V0

∫ ∞
0

t
dVNI
dt

dt =
1
V0

∫ ∞
0

tNδT ?dt.(5.30)

Substituting the value of T ?(t) given above, using the quasi-steady state condition
NkT0 = c, and integrating, we find

Tg =
1
δ

+
1
c
.(5.31)
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What we have called the viral generation time has a very simple interpretation.
In the life cycle of HIV, virions are either free or within cells. The generation time
is thus the sum of the average times spent in these two compartments, 1/c being the
average lifetime of a free virion and 1/δ being the average lifespan of an infected cell.
There is also another interpretation. Because the system is at quasi-steady state,
c = NkT0, the clearance rate and rate of new cell infection are coupled. Thus, the
viral generation time can also be viewed as the time for an infected cell to produce N
new virions, i.e., its lifespan 1/δ, plus the time for this cohort of N virions to infect
any of the T0 uninfected target cells, i.e., 1/(NkT0). For the five patients studied
in [55], the average generation time was 2.6 days. In more recent studies employing
combination therapy [51] or the RT inhibitor nevirapine [20], higher estimates of δ
were obtained, which lead to a generation time of 1.8 days. This implies that in a
steady state patient, HIV goes through approximately 140 to 200 replication cycles
per year.

6. Drug Resistance. The fact that > 1010 virions are produced each day in the
average midstage HIV-1 infected patient has significant implications for the genera-
tion of drug resistance. When HIV replicates, its RNA genome is reverse transcribed
into DNA. This copying process is error-prone, and in vivo the error rate has been
estimated as 3× 10−5 per base per replication cycle [36]. The HIV-1 genome has ap-
proximately 104 bases, and thus the average number of changes per genome is 0.3 per
replication cycle. According to the binomial distribution or its Poisson approxima-
tion, we then expect, after one replication, 74% of infected cells to carry unmutated
genomes, 22% of infected cells to carry genomes with one mutation, 3.3% to carry
two mutations, 0.33% to carry three mutations, and so on (Table 6.1).

Not all 1010 virions produced per day will infect other cells. Some will be de-
fective; others, even if infectious, will be cleared. If, as suggested by Haase et al.
[19], about 100 virions are produced per productively infected CD4+ T cell, then at
steady state only one of these 100 virions should go on to successfully infect another
cell and produce a new generation of virions. (Recent, unpublished data from P.
Bucy, University of Alabama, suggests that this estimate of 100 virions may be an
order of magnitude too low. However, even if true, it will not change the conclusions
reached below.) If one productively infected cell led to the productive infection of
more than one other cell, then the infection would not be in steady state and the
number of virions would be increasing. If we assume that one out of a hundred viri-
ons infect another cell, then on average there are 108 new infections per day. Hence,
as shown in Table 6.1, we expect on average 0.22× 108 mutants to be generated per
day with single base changes. Because each of the 104 bases in HIV-1 could mutate
to any of 3 other bases, there are a total of 3i

(
n
i

)
possible sequences of length n with

i mutations. Thus, with n = 104, there are 3 × 104 possible single base mutants,
and essentially all of them would be generated each day. Consequently, resistance
to drugs, such as 3TC, which only require a single base change is expected to oc-
cur rapidly and does [60]. In our initial studies with ritonavir [23], virus plasma
levels fell to approximately 1% of their pretreatment values in 2 weeks. However,
in 18 out of 20 patients the decrease in virus was not maintained for long periods,
and the viral load rebounded. Genetic analysis suggests that one of the key resis-
tance mutations for the protease gene, a valine to alanine substitution at position
82, preexisted [13], as predicted by these calculations. A similar pattern of rapid
emergence of drug resistance to HIV-1 RT inhibitor nevirapine has also been seen
[20, 65].
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Table 6.1 Adapted from [52]. Assuming that the HIV genome is approximately 104 base pairs long
and that RT introduces errors into the HIV genome at a rate of 3 × 10−5 per base pair
per generation, the table shows the probability of an infected cell containing a proviral
HIV genome with zero, one, two, or three mutations in it. Further, assuming 108 new
cells are infected each day, the expected number of such mutants created each day within
one infected individual is given. Lastly, we have also computed the fraction of all possible
mutants with one, two, or three mutations that are created each day. If, for example,
only one particular triple mutant gave rise to drug resistance then the probability of it
being generated in a given patient on any given day from a wild-type virus is 7.4× 10−8.

Base Probability Number Number of Fraction of all
changes of mutant created per day possible mutants possible mutants

created per day
0 0.74 7.4× 107 1
1 0.22 2.2× 107 3.0× 104 1
2 0.033 3.3× 106 4.5× 108 7.4× 10−3

3 0.0033 3.3× 105 4.5× 1012 7.4× 10−8

The chance of a mutant arising with a particular two-base change, while substan-
tially lower, is not so low that it can be neglected. The rate of generation of double
mutants is 3.3×106/day or ∼ 0.74%/day of the possible two-base mutants (Table 6.1).
Because a number of mutation combinations can lead to resistance, there is a reason-
able chance that two-base mutants that could confer drug resistance preexist or will
appear. In fact, in a population of size 1/7.4 × 10−3 = 135, one would expect every
possible double mutant to be created on average each day. Although we have not
modeled mutant survival, we would expect many of these mutants to survive and be
able to grow in the presence of drug. Thus, in a large population, many recipients of
drug will show resistance if only two mutations are required. Models which explicitly
take into consideration the generation and growth of mutants have been developed
[3, 4, 47, 61, 66] and will not be reviewed here.

For three-base-change mutants, the situation is different. In single replication
cycles, less than 10−7 of all possible three-base mutants are generated per day (Ta-
ble 6.1). Thus, it is extraordinarily unlikely that any particular three-base-change
mutant will arise spontaneously. However, such mutants can be selected by sequen-
tial mutations if one- or two-base mutants replicate.

7. Combination Therapy. The results of the last section suggest that therapy
using a single drug is doomed to fail because of drug resistance. Thus, in order to
sustain a long-term response, models predict, and experience has borne out, that
combination therapy is needed. Since both RT and protease inhibitors are available,
most combination therapies employ both types of inhibitors in order to block the viral
life cycle at two independent points.

In a clinical trial employing a protease inhibitor, nelfinavir, and two RT, AZT
and 3TC, novel dynamics were observed after therapy was initiated [51]. As with a
single drug, the virus concentration in plasma fell dramatically for one to two weeks.
However, under continued therapy, after this initial “first phase” of decline, the virus
continued to fall but at a significantly slower rate. When the virus concentration was
plotted on a logarithmic scale, the two phases of viral decline were both seen to be
approximately exponential, as displayed in Figure 7.1.

The question then arose: Why did the virus not continue to fall at the rapid first-
phase rate? The antiretroviral effect of the combination therapy was potent in that
the concentration of HIV-1 in plasma dropped below the standard detection threshold
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Fig. 7.1 Examples of two-phase decline in plasma virus seen after the initiation of potent combina-
tion therapy. Data from two different patients is shown.

of 500 copies/ml by 8 weeks of treatment, and was found to be <25 copies/ml at weeks
16–20 using an ultrasensitive assay. Further, there was no evidence of emergence of
drug-resistant virus during the 16–20-week study period, suggesting that the second
phase of decay has a biological origin.

In the presence of both RT and protease inhibitors our basic model, with T =
constant = T0, takes the form

dT ?

dt
= (1− ηRT )kVIT0 − δT ?,(7.1)

dVI
dt

= (1− ηPI)NδT ? − cVI ,(7.2)

dVNI
dt

= ηPINδT
? − cVNI ,(7.3)



32 ALAN S. PERELSON AND PATRICK W. NELSON

where ηRT and ηPI are the effectiveness of the RT and protease inhibitors, respectively.
If both the protease and RT inhibitors are 100% effective, then the model simplifies
to

dT ?

dt
= −δT ?,(7.4)

dVI
dt

= −cVI ,(7.5)

dVNI
dt

= NδT ? − cVNI ,(7.6)

with solution

T ?(t) = T ?(0)e−δt =
kV0T0

δ
e−δt,

VI(t) = V0e
−ct,

VNI(t) =
NδT ?(0)
c− δ

[
e−δt − e−ct

]
.

If we assume that the patient was in quasi-steady state before treatment, then T ?(0) =
kV0T0/δ and NkT0 = c, and we find

V (t) = VI(t) + VNI(t) = V0

[
ce−δt − δe−ct

c− δ

]
.

Hence, one would expect that after a rapid transient of the order of 1/c, the viral
load would fall exponentially at a rate characterized by the constant δ. This fall
corresponds to the first-phase decline observed in the data.

Although there are many possible explanations for the second phase of plasma
virus decline, we shall restrict our attention to those that we believe are the most
plausible. First, if there were a source of virus other than infected cells, then the
virus concentration, rather than falling continually, would ultimately come to a new
steady state in which production by this source was in balance with clearance. If
the source, rather than being constant, decayed slowly, then the virus concentration
would exhibit a second phase decline whose rate reflected the rate of decay of the
source.

In addition to CD4+ T cells, other cells are known to be susceptible to HIV-1
infection. One such pool of cells are macrophages, large cells that reside in tissue
and which can engulf various biological debris. A fraction of these cells are CD4+,
and in cell culture they become productively infected by HIV-1. Furthermore, HIV
infection in cell culture tends not to kill macrophages, and they are able to produce
virus particles for weeks in culture. Another possibility is that the pool of T cells
is heterogeneous, with a subpopulation of T cells upon infection producing fewer
virions and living longer. Incorporating a second population of cells, M , susceptible
to infection with rate constant kM , we obtain the following, which we call the long-
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lived infected cell model:

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kV T,(7.7)

dT ?

dt
= kV T − δT ?,(7.8)

dM

dt
= sM − dMM − kMVM,(7.9)

dM?

dt
= kMVM − µMM?,(7.10)

dV

dt
= NδT ? + pMM

? − cV.(7.11)

Here M? denotes the concentration of productively infected long-lived cells, which are
assumed to produce virus continually at rate pM per cell and to die at rate µM per
cell. Long-lived cells are assumed to be created by a constant source at rate sM and
to die with rate constant dM .

Before treatment is initiated we shall assume that patients are in quasi-steady
state, so that at t = 0, dV/dt = 0, dT ?/dt = 0, and dM∗/dt = 0, or

T ?0 = kV0T0/δ, M∗0 = kMV0M0/µM , NδT ?0 + pMM
∗
0 = cV0.(7.12)

If both the protease and RT inhibitors are 100% effective, then for t > 0, k = kM = 0,
and all virus that is produced is noninfectious. Hence, after therapy is initiated,

dT

dt
= +pT

(
1− T

Tmax

)
− dTT,(7.13)

dT ?

dt
= −δT ?,(7.14)

dM

dt
= sM − dMM,(7.15)

dM?

dt
= −µMM?,(7.16)

dVI
dt

= −cVI ,(7.17)

dVNI
dt

= NδT ? + pMM
? − cVNI .(7.18)

The equations for T and M decouple from the equations determining viral dynamics,
and hence the assumption that T or M remains constant after therapy need not be
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made. Because the viral dynamic equations are linear, the following solution can be
obtained in a straightforward manner:

T ?(t) = T ?0 e
−δt,(7.19)

M∗(t) = M∗0 e
−µM t,(7.20)

VI(t) = V0e
−ct,(7.21)

VNI(t) =
NδT ?0
c− δ [e−δt − e−ct] +

pM∗0
c− µM

[e−µM t − e−ct].(7.22)

Using the quasi-steady state constraints (7.12), we find

VNI(t) = V0

[
NkT0

c− δ (e−δt − e−ct) +
c−NkT0

c− µM
(e−µM t − e−ct)

]
,

and hence

V (t) = V0

[(
1− NkT0

c− δ −
c−NkT0

c− µM

)
e−ct +

NkT0

c− δ e
−δt +

c−NkT0

c− µM
e−µM t

]
.

(7.23)

Using nonlinear least squares regression we fitted the patient data obtained in this
combination therapy clinical trial to the long-lived infected cell model and estimated
three parameters: δ, µM , and the composite parameter, NkT0. Virion clearance
occurred too rapidly to estimate c from the data obtained in this study. Thus c was
held constant at the mean value, c =3 day−1, determined in [55]. The parameter µM ,
which determines the lifespan of the long-lived infected cells, ranged from 0.03 to 0.12
day−1, with a mean value of 0.07± 0.04 day−1. The half-life of the cell population
responsible for the second phase of viral decay, t1/2 = ln 2/µM , had a mean value of
13.3 days, with a standard deviation of 7.9 days. The theoretical curves generated
from (7.23) using the best-fit parameter values gave an excellent fit to the data for
all patients (see Figure 7.1 for examples). The values of δ ranged from 0.36 to 0.81
day−1, with a mean of 0.59 ± 0.15 day−1. The corresponding t1/2 values of the
short-lived infected cells ranged from 0.86 to 1.92 days, with a mean of 1.25 ± 0.34
days. This mean value was somewhat smaller than our previous estimate of 1.6 days
[55], possibly due to the greater effectiveness of the triple drug combination than the
monotherapy used in [55].

While the long-lived cell model fits the patient data, it is not the only reason-
able biological model. It is known that HIV-1 is trapped on the surface of follicular
dendritic cells [8, 19, 21], a population of cells that reside in lymphoid tissue. HIV
can also be released from these trapping sites [6]. Thus, the source underlying the
second-phase kinetics might be the release of virions trapped in lymphoid tissue. Let
VL be the concentration of trapped virions. Such virions may be degraded within
lymphoid tissue at rate µV L per virion, or released into the circulation with rate con-
stant pM . Thus, once therapy starts, if we neglect any additional viral trapping, we
obtain

dVL
dt

= −(µV L + pM )VL.(7.24)
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Further, virus appears in the circulation at rate pMVL. Notice that if we let VL = M∗

and µM = µV L + pM , then a model with productively infected short-lived CD4+ T
cells and release of trapped virions would give rise to the same equations as the long-
lived infected cell model for t > 0, and hence would make the same predictions as to
how V (t) changes during therapy. Thus, the fact that one can obtain good agreement
between experimental data and the long-lived cell model cannot be used to rule out
release of trapped virions as an explanation or a part of the explanation for the second
phase of viral decay.

One difference between the long-lived cell model and the trapped virion model is
that virions released from tissues would be virions trapped before therapy was initiated
and hence should be infectious rather than noninfectious. Thus, it might be possible
to distinguish this model from the long-lived cell model experimentally. So far, this
has not been possible due to technical difficulties in analyzing the low concentration
of virions that can be obtained during the second phase. The models could also
be distinguished if trapping of virions were occurring at an observable rate during
therapy. We are currently examining more detailed models of viral transport between
blood and lymphoid tissue, with reversible binding of virus particles to follicular
dendritic cells.

Another alternative model is one based on the activation of latently infected
cells, L. Recall that latently infected cells are cells that harbor HIV-1 DNA as a
provirus but which are not producing virus. These cells, when activated into cell
division, reproduce their DNA, and in the process they read the viral DNA. Due
to signals embedded in the viral genetic code this may cause the production of new
virus particles. Hence, the activation of latently infected cells can turn them into
productively infected cells.

To model the process of latent infection, we assume that when CD4+ T cells, T ,
are infected, T ? cells are produced with rate constant k and that latently infected cells
are produced with rate constant fk, with f < 1. Latently infected cells are assumed
to die at rate δL and to be activated at rate a, giving a total rate of loss µL = a+ δL.
According to this model,

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kV T,

dT ?

dt
= kV T + aL− δT ?,

dL

dt
= fkV T − µLL,

dV

dt
= NδT ? − cV.

Again assuming the RT and protease inhibitors in the combination are 100% effective
(so that for t > 0, k = 0), and that the patient is in quasi-steady state before therapy
(so that at t = 0, dT ?/dt = dL/dt = dV/dt = 0), one finds that

V = V0[Ae−δt +Be−µLt + (1−A−B)e−ct],(7.25)

where

A =
cµL

(µL + af)(c− δ)

(
1− af

δ − µL

)
,
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B =
afδc

(µL + af)(c− µL)(δ − µL)
.

Fitting the latently infected cell model to the patient data provided estimates of δ and
µL. However, the data was not sufficient to separately determine the other parameters
in the coefficients A and B.

The parameter µL determines the rate of loss of latently infected cells, by either
death or activation. The best-fit values of µL were indistinguishable from the best-fit
values of µM determined in the long-lived infected cell model, and correspond to the
slope of the second-phase decay. Examining the relationship between the values of
µM , or µL, with the patient’s baseline CD4 count, we found an inverse correlation.
Thus, the lower the baseline CD4 count, the faster the cells responsible for the second
phase of viral decay are lost. This is not what one would expect if such cells were being
eliminated by a host immune response. Within the context of the latently infected
cell model, the increase in µL may reflect an increase in the rate of cell activation,
µL = a+ δL, with disease progression [58].

The latently infected cell model also gives predictions for the best-fit value of δ,
the short-lived infected cell lifetime, that are indistinguishable from the values ob-
tained from the long-lived infected cell model. Using the best-fit parameter values,
the theoretical curves predicted from (7.25) are indistinguishable from those pre-
dicted by (7.23). Hence, both the latently infected cell model and the long-lived
infected cell model make identical predictions for the course of second-phase decay.
However, the two models can be distinguished by the use of additional experimental
information.

In a system where a population of latently infected cells is responsible for the
second phase of viral decay, an increase in the activation rate of resting cells could
significantly alter the decay behavior. Such an increase could be caused by, for ex-
ample, natural infection, vaccination, or artificial stimulation of the immune system
by some type of immunotherapy. Thus, immune stimulation administered during the
second phase of viral decay for a patient with inhibitor effectiveness approaching 100%
could provide important information concerning the mechanism of viral decay. Fol-
lowing a significant immunogenic challenge, the latently infected cell model predicts
an increase in viral burden followed by an accelerated decay and subsequent clearance
of infection, or a return to second-phase-type decay, depending on the magnitude of
the immunogenic challenge as shown in Figure 7.2, while the long-lived productively
infected cell model predicts no change in the slow second-phase decay. Preliminary
experiments in which patients were vaccinated during the second phase did not show
a statistically significant increase in viral load. Further experiments are planned in
which more potent immunostimulation is given.

We have shown that measuring the viral load in blood after initiation of
antiretroviral treatment does not provide sufficient information to identify the bio-
logical processes underlying the second phase of viral decline. This conclusion, which
was taken seriously by our experimental collaborator David Ho, led to the perfor-
mance of the following additional experiment. Blood, in addition to containing virus
particles, also contains infected cells. The number of such cells can be estimated by
limiting dilution procedures [34]. A fixed number of cells are taken from a patient
and placed in cell culture with T cells from a healthy donor. If the culture conditions
are proper, then if there are any infected cells in the patient sample, the T cells in
the culture should become infected. Placing successively fewer patient cells in similar
cultures, one ultimately finds that at some limited number of cells, the cultures do
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Fig. 7.2 Predictions of the effects of immune stimulation from the latently infected cell model. At
t = 30 days, a fraction of latently infected cells are converted into productively infected
cells, T ?. The figure shows that large perturbations would be needed to see a substantial
change in viral load.

not become infected. Upon running the assays multiple times and doing a proper
statistical analysis, quantitative estimates can be obtained for the expected frequency
of infected cells.

In the limiting dilution cultures, latently infected cells should become activated
and produce virus. Thus the number of infected cells detected by these limiting
dilution procedures should be equal to the number of productively infected T cells,
T ?, plus the number of latently infected cells capable of making virus, L. (Latently
infected cells that are not capable of producing virus can be ignored since they cannot
contribute to the second phase of viral decay.) Long-lived cells such as macrophages
reside in tissue, and thus it is sensible to assume that they are not detected in the
limiting dilution assay, which uses a sample of cells from blood as starting material.

Using this logic, as well as limiting dilution data, Perelson et al. [51] analyzed
a model in which both latently infected and long-lived cells were included. This
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combined model had the obvious form:

dT

dt
= s+ pT

(
1− T

Tmax

)
− dTT − kV T,

dT ?

dt
= kV T + aL− δT ?,

dL

dt
= fkV T − µLL,(7.26)

dM

dt
= sM − dMM − kMVM,

dM∗

dt
= kMVM − µMM∗,

dV

dt
= NδT ? + pMM

∗ − cV,

and solution

V (t) = V0[Ae−δt +Be−µLt + Ce−µM t + (1−A−B − C)e−ct],(7.27)

where

A =
NkT0

c− δ

(
1− af

δ − µL

)
,

B =
afδNkT0

µL(δ − µL)(c− µL)
,

C =
c−NkT0

(
1 + af

µL

)
c− µM

,

where we again have assumed a pretreatment quasi-steady state and 100% effective
treatment. Further, the limiting dilution data was assumed to give the frequency of
infected cells, a quantity assumed to be proportional to I(t) ≡ T ?(t) + L(t). From
the solution of (7.26), one easily obtains

I(t) =
kV0T0

δ

[(
1− af

δ − µL

)
e−δt +

fδ

µL

(
1 +

a

δ − µL

)
e−µLt

]
.(7.28)

Fitting experimental data to the combined model gave estimates of the most
important parameters. Details can be found in [51]. This analysis suggested that
while both latently infected and long-lived cells contribute to the second phase, long-
lived infected cells are the major source of second-phase virus. Estimating the total
possible body burden of long-lived infected cells to be between 109 and 1012, and
assuming that the second phase decays with a half-life of four weeks, the slowest
rate among the patients studied in [51], we estimated that on average it would take
between two and a half and three years of perfectly effective treatment to allow the
cells responsible for the second phase to completely decay, and for V to approach
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zero in this model. These estimates, when presented in preliminary form at the
XIth International Conference on AIDS in Vancouver in 1996 [53], generated a lot
of enthusiasm and optimism. It was hoped that, if patients were kept on drugs for
two to three years, the virus might be eradicated. More importantly, it established
that even though the amount of viral RNA went undetectable in patients after some
months of combination therapy, patients need to remain on therapy for at least a few
years to allow the cells responsible for the second phase to decay.

8. Discussion. In this paper we have tried to show how mathematical modeling
has impacted our understanding of HIV pathogenesis. Before modeling was brought to
bear in a serious manner, AIDS was thought to be a slow disease in which treatment
could be delayed until symptoms appeared, and patients were not monitored very
aggressively. In the large, multicenter AIDS cohort studies aimed at monitoring the
natural history of the disease, blood typically was drawn every six months. There
was a poor understanding of the biological processes that were responsible for the
observed levels of virus in the blood and the rapidity at which the virus became drug
resistant. Modeling, coupled with advances in technology, has changed all of this. In
section 2, we showed how an extremely simple model involving a single linear ordinary
differential equation, when applied to the interpretation of clinical data obtained in
a phase I/II drug trial, gave the first quantitative estimate of how rapidly HIV was
being produced and cleared in an infected person. While the mathematics involved
was trivial, the application of mathematics in this manner was novel and set off what
has been described as a revolution in thinking about HIV. The papers by Ho et al.
[23] and Wei et al. [65] that were published in the same issue of Nature and that both
reported an approximately two-day half-life for HIV in plasma, were the most highly
cited scientific papers published in 1995.

A more complex model presented in section 3 that incorporated both virus and
infected cells, when compared with data collected to test the model, showed that
the two-day viral half-life mainly reflected the lifetime of infected cells that produced
virus. Thus, the first estimate of the lifetime of a productively infected cell in vivo
was obtained, which allowed us to think in a more quantitative manner about the
issue of CD4+ T cell depletion, the hallmark of AIDS. Further, the estimate of the
rate of clearance of free viral particles was improved and the half-life of free virus
particles in plasma is now estimated at six hours or less. Because the level of virus is
maintained at steady state, the rate of viral clearance can be used to determine how
rapidly HIV is produced. Doing these calculations led to the conclusion that in an
average HIV-infected person, at least 1010 virus particles are produced and released
into bodily fluids each day. As explained in section 5.6, these estimates can be used
to calculate a viral generation time of approximately 1.8 days. This implies that in
an infected person HIV can go through about 200 replication cycles per year, with
the possibility of mutating at each replication. Thus, the rapid evolution of HIV
can easily be understood. The practical implication of this was that therapy with a
single drug in which a few mutations were all that were required for resistance to arise
could be shown to be a poor strategy. This helped usher in the current strategy of
combination therapy and the approach of treating HIV-infected persons as soon after
diagnosis as possible.

Using more complex models, involving multiple cell populations, has allowed fur-
ther interpretation of clinical data obtained from patients on combination therapy, in
which the virus concentration in plasma has a two-phase decline. This work, described
in section 7, has also had important practical consequences. By extrapolating in a
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rigorous way the data obtained from patients responding well to combination therapy,
we were able to estimate how long therapy would need to be given to clear the cells
responsible for producing the observed levels of virus. While bringing home the lesson
that therapy would need to continue for years after free virus became undetectable in
blood, the work also began the process of quantifying both the level and the role of
latently infected and long-lived infected cell populations in HIV infection.

Throughout this paper we have analyzed situations in which models predict that
under sufficiently intense therapy, the virus and infected cell concentrations will go
to zero. The question then arises: Is viral eradication a realistic expectation? At the
moment, we do not know. Clearly, the models that we have analyzed are only sim-
plified caricatures of reality. They have not included the spatial and compartmental
aspects of the body, and have implicitly assumed that drug is available everywhere in
the body at a constant effectiveness. Not all drugs penetrate the blood–brain barrier
effectively, and thus drug concentrations in the brain and central nervous system tend
to be lower than in the circulation. Also, the cells of the immune system have limited
access to these sites, and hence the brain and other sites with poor drug penetrance,
such as the testes, may act as sanctuaries for the virus. Not surprisingly, in models
with drug sanctuaries it is easier to generate drug resistance [28], and hence ongo-
ing viral replication may remain a problem until a new generation of drugs becomes
available.

The models have only dealt with the major targets of HIV infection, CD4+ T
cells and macrophages. However, other cells may become HIV-infected and exhibit
different kinetics. We have only dealt with infection of cells by free virus and the
death of cells due to viral infection. Direct cell-to-cell transmission of virus has been
reported in cell culture, as has death of cells due to effects other than direct viral
killing. All of these features may play a role in the long-term behavior of HIV-1 in
vivo.

Another large omission in our models has been the immune response. Processes
such as the death of virally infected cells and/or the clearance of free viral particles
may have an immune component. Furthermore, viruses can evolve to become more
pathogenic and drug resistant. Thus, parameters in our models, rather than being
constant, as we have assumed, may vary in time and depend in some complex way on
events occurring in the host. Many of us hope that drugs will not need to be given
until every last viral particle and infected cell is eliminated, but rather that as the
amount of virus is reduced by antiretroviral drugs, recovery of the immune system
will occur, and the host defense system will ultimately be able to control or clear any
remaining virus. Both models and experiment are needed to examine this possibility.

Potent combination therapy has been available for 2 to 3 years. Analysis of lym-
phocytes from blood and tissue biopsies have shown that small numbers of latently
infected cells can be found in patients treated for as long as 2.5 years [16, 69]. Whether
the immune system can control the remaining infection is not known, and thus ces-
sation of antiretroviral treatment is not recommended. The rate at which latently
infected cells are decaying, and particularly those carrying proviruses that can gen-
erate infectious particles on stimulation, is also not yet known, although there are
some suggestions that they may have a half-life of approximately 3 to 5 months [22].
Making estimates of the pool size of latently infected cells, one can surmise that 5
to 7 years of continuous therapy may be required to achieve eradication of latently
infected CD4+ T cells [22]. This is an unacceptable solution due to the complex-
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ity of complying with current drug regimes, drug side effects, and cost. Alternative
approaches are needed and are being examined [22].

Models, such as the ones discussed here, have been developed and tested on
data obtained over relatively short periods: days, weeks, and in some cases months.
Even though the models appear accurate on these time scales, they should not be
used to predict the long-term events in individual patients. They have provided much
insight into the biological events underlying the disease process and have helped guide
treatment strategies. Eradicating HIV from an infected patient or helping the body
control the infection still remains our goal. We believe that modeling will continue to
play an important role in attaining this goal.

Acknowledgments. This work would not have been possible without extensive
collaboration with David D. Ho, head of the Aaron Diamond AIDS Research Center,
Rockefeller University, New York. Dr. Martin Markowitz, Aaron Diamond AIDS
Research Center, was responsible for the clinical aspects of the studies reported here.
Avidan Neumann of Bar-Ilan University, Israel and Paulina Essunger of Harvard
University contributed to the original analysis of the patient data. We thank Lee
Segel for reading and commenting on the manuscript.

REFERENCES

[1] R. M. Anderson and R. M. May, Epidemiology parameters of HIV transmission, Nature, 333
(1988), pp. 514–519.

[2] R. W. Anderson, M. S. Ascher, and H. W. Sheppard, Direct HIV cytopathicity cannot
account for CD4 decline in AIDS in the presence of homeostatis: A worst-case dynamic
analysis, J. AIDS and Human Retrovirol., 17 (1998), pp. 245–252.

[3] S. Bonhoeffer, R. M. May, G. M. Shaw, and M. A. Nowak, Virus dynamics and drug
therapy, Proc. Nat. Acad. Sci. U.S.A., 94 (1997), pp. 6971–6976.

[4] S. Bonhoeffer and M. A. Nowak, Pre-existence and emergence of drug resistance in HIV-1
infection, Proc. Roy. Soc. London B, 264 (1997), pp. 631–637.

[5] A. Carmichael, X. Jin, P. Sissons, and L. Borysiewicz, Quantitative analysis of the human
immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at
different stages of HIV-1 infection: Differential CTL responses to HIV-1 and Epstein-Barr
virus in late disease, J. Exp. Med., 177 (1993), pp. 249–256.

[6] W. Cavert, D. W. Notermans, K. Staskus, S. W. Wietgrefe, M. Zupancic, K. Gebhard,

K. Henry, Z. Q. Zhang, R. Mills, H. McDade, C. M. Schuwirth, J. Goudsmit, S. A.

Danner, and A. T. Haase, Kinetics of response in lymphoid tissues to antiretroviral
therapy of HIV-1 infection, Science, 276 (1997), pp. 960–964.

[7] T. W. Chun, L. Carruth, D. Finzi, X. Shen, J. A. DiGiuseppe, H. Taylor, M. Her-

mankova, K. Chadwick, J. Margolick, T. C. Quinn, Y. H. Kuo, R. Brookmeyer,

M. A. Zeiger, P. Barditch-Crovo, and R. F. Siliciano, Quantification of latent tissue
reservoirs and total body viral load in HIV-1 infection, Nature, 387 (1997), pp. 183–188.

[8] E. A. Clark, HIV: Dendritic cells as embers for the infectious fire, Current Biology, 6 (1996),
pp. 655–657.

[9] J. M. Coffin, HIV population dynamics in vivo: Implications for genetic variation, pathogen-
esis, and therapy, Science, 267 (1995), pp. 483–489.

[10] L. N. Cooper, Theory of an immune system retrovirus, Proc. Nat. Acad. Sci. U.S.A., 83
(1986), pp. 9159–9163.

[11] R. J. De Boer and A. S. Perelson, Target cell limited and immune control models of HIV
infection: A comparison, J. Theoret. Biol., 190 (1998), pp. 201–214.

[12] J. Dolezal and T. Hraba, Application of mathematical model of immunological tolerance to
HIV infection, Folia Biol., 34 (1988), pp. 336–341.

[13] P. S. Eastman, J. E. Mittler, R. Kelso, C. Gee, E. Boyer, J. Kolberg, M. Urdea, J. M.

Leonard, D. W. Norbeck, H. Mo, and M. Markowitz, Genotypic changes in human
immunodeficiency virus type 1 associated with loss of suppression of plasma viral RNA



42 ALAN S. PERELSON AND PATRICK W. NELSON

levels in subjects treated with ritonavir (norvir) monotherapy, J. Virology, 72 (1998), pp.
5154–5164.

[14] P. Essunger, M. Markowitz, D. D. Ho, and A. S. Perelson, Efficacy of drug combina-
tion and dosing regimen in antiviral therapy, in Intl. Workshop on HIV Drug Resistance,
Treatment Strategies and Eradication, St. Petersburg, FL, June 1997, Antiviral Therapy,
Abstr. 73, 1997.

[15] P. Essunger and A. S. Perelson, Modeling HIV infection of CD4+ T-cell subpopulations,
J. Theoret. Biol., 170 (1994), pp. 367–391.

[16] D. Finzi, M. Hermankova, T. Pierson, L. M. Carruth, C. Buck, R. E. Chaisson, T. C.

Quinn, K. Chadwick, J. Margolick, R. Brookmeyer, J. Gallant, M. Markowitz,

D. D. Ho, D. D. Richman, and R. F. Siliciano, Identification of a reservoir for HIV-1
in patients on highly active antiretroviral therapy, Science, 278 (1997), pp. 1295–1300.

[17] S. D. W. Frost and A. R. McLean, Germinal centre destruction as a major pathway of HIV
pathogenesis, J. AIDS, 7 (1994), pp. 236–244.

[18] S. D. W. Frost and A. R. McLean, Quasispecies dynamics and the emergence of drug resis-
tance during ziduvine therapy of HIV infection, AIDS, 8 (1994), pp. 323–332.

[19] A. T. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. A. Faust, H. Melroe, W. Cavert,

K. Gebhard, K. Staskus, Z. Q. Zhang, P. J. Dailey, H. H. Balfour Jr, A. Erice,

and A. S. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue,
Science, 274 (1996), pp. 985–989.

[20] D. V. Havlir, S. Eastman, A. Gamst, and D. D. Richman, Nevirapine-resistant human
immunodeficiency virus: Kinetics of replication and estimated prevalence in untreated
patients, J. Virol., 70 (1996), pp. 7894–7899.

[21] S. L. Heath, J. G. Tew, A. K. Szakal, and G. F. Burton, Follicular dendritic cells and
human immunodeficiency virus infectivity, Nature, 377 (1995), pp. 740–744.

[22] D. D. Ho, Toward HIV eradication or remission: The tasks ahead, Science, 280 (1998), pp.
1866–1867.

[23] D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz,
Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373
(1995), pp. 123–126.

[24] D. D. Ho, R. J. Pomerantz, and J. C. Kaplan, Pathogenesis of infection with human im-
munodeficiency virus, New England J. Med., 317 (1987), pp. 278–286.

[25] T. Hraba and J. Dolezal, Mathematical model of CD4+ lymphocyte depletion in HIV infec-
tion, Folia Biol., 35 (1989), pp. 156–163.

[26] T. Hraba, J. Dolezal, and S. Celikovsk’y, Model-based analysis of CD4+ lymphocytes
dynamics in HIV infected individuals, Immunobiology, 181 (1990), pp. 108–118.

[27] N. Intrator, G. P. Deocampo, and L. Cooper, Analysis of immune system retrovirus equa-
tions, in Theoretical Immunology, Part 2, A. S. Perelson, ed., Addison-Wesley, Redwood
City, CA, 1988.

[28] T. B. Kepler and A. S. Perelson, Drug concentration heterogeneity facilitates the evolution
of drug resistance, Proc. Nat. Acad. Sci. U.S.A., 95 (1998), pp. 11514–11519.

[29] D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices Amer. Math.
Soc., 43 (1996), pp. 191–202.

[30] D. Kirschner, S. Lenhart, and S. Serbin, Optimal control of the chemotherapy of HIV, J.
Math. Biol., 35 (1997), pp. 775–792.

[31] D. E. Kirschner, R. Mehr, and A. S. Perelson, The role of the thymus in pediatric HIV-1
infection, J. AIDS Human Retrovirol., 18 (1998), pp. 95–109.

[32] D. E. Kirschner and G. F. Webb, A model for treatment strategy in the chemotherapy of
AIDS, Bull. Math. Biol., 58 (1996), pp. 367–391.

[33] D. E. Kirschner and G. F. Webb, Understanding drug resistance for monotherapy treatment
of HIV infection, Bull. Math. Biol., 59 (1997), pp. 763–785.

[34] I. Lefkovits and H. Waldmann, Limiting Dilution Analysis of Cells in the Immune System,
Cambridge University Press, Cambridge, UK, 1979.

[35] R. Leonard, D. Zagury, I. Desportes, J. Bernard, J. F. Zagury, and R. C. Gallo,
Cytopathic effect of human immunodeficiency virus in T4 cells is linked to the last stage
of virus infection, Proc. Nat. Acad. Sci. U.S.A., 85 (1988), pp. 3570–3574.

[36] L. M. Mansky and H. M. Temin, Lower in vivo mutation rate of human immunodeficiency
virus type 1 than that predicted from the fidelity of purified reverse transcriptase, J. Virol.,
69 (1995), pp. 5087–5094.

[37] A. R. McLean, HIV infection from an ecological viewpoint, in Theoretical Immunology, Part
2, A. S. Perelson, ed., Addison-Wesley, Redwood City, CA, 1988.



MATHEMATICAL ANALYSIS OF HIV-1 DYNAMICS IN VIVO 43

[38] A. R. McLean and S. D. W. Frost, Ziduvidine and HIV: Mathematical models of within-host
population dynamics, Rev. Med. Virol., 5 (1995), pp. 141–147.

[39] A. R. McLean and T. L. B. Kirkwood, A model of human immunodeficiency virus (HIV)
infection in T-helper cell clones, J. Theoret. Biol., 147 (1990), pp. 177–203.

[40] A. R. McLean and M. A. Nowak, Models of interactions between HIV and other pathogens,
J. Theoret. Biol., 155 (1992), pp. 69–86.

[41] S. Merrill, AIDS: Background and the dynamics of the decline of immunocompetence, in
Theoretical Immunology, Part 2, A. S. Perelson, ed., Addison-Wesley, Redwood City, CA,
1988.

[42] S. Merrill, Modeling the interaction of HIV with the cells of the immune system, in Mathe-
matical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath. 83,
Springer-Verlag, New York, 1989.

[43] H. Mohri, S. Bonhoeffer, S. Monard, A. S. Perelson, and D. D. Ho, Rapid turnover of
T lymphocytes in SIV-infected rhesus macaques, Science, 279 (1998), pp. 1223–1227.

[44] M. A. Nowak, Variability of HIV infections, J. Theoret. Biol., 155 (1992), pp. 1–20.
[45] M. A. Nowak, R. M. Anderson, M. C. Boerlijst, S. Bonhoeffer, R. M. May, and A. J.

McMichael, HIV-1 evolution and disease progression, Science, 274 (1996), pp. 1008–1010.
[46] M. A. Nowak, R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit, and R. M.

May, Antigenic diversity threshold and the development of AIDS, Science, 254 (1991), pp.
963–969.

[47] M. A. Nowak, S. Bonhoeffer, G. M. Shaw, and R. M. May, Anti-viral drug treatment:
Dynamics of resistance in free virus and infected cell populations, J. Theoret. Biol., 184
(1997), pp. 205–219.

[48] M. A. Nowak and R. M. May, Mathematical biology of HIV infections: Antigenic variation
and diversity threshold, Math. Biosci., 106 (1991), pp. 1–21.

[49] A. S. Perelson, Modeling the interaction of HIV with the immune system, in Mathematical
and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath., 83, Springer-
Verlag, New York, 1989.

[50] A. S. Perelson, Two theoretical problems in immunology: AIDS and epitopes, in Complexity:
Metaphors, Models and Reality, G. Cowan, D. Pines, and D. Meltzer, eds., Addison-Wesley,
Reading, CA, 1994.

[51] A. S. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela,

M. Markowitz, and D. D. Ho, Decay characteristics of HIV-1-infected compartments
during combination therapy, Nature, 387 (1997), pp. 188–191.

[52] A. S. Perelson, P. Essunger, and D. D. Ho, Dynamics of HIV-1 and CD4+ lymphocytes
in vivo, AIDS, 11 (suppl A) (1997), pp. S17–S24.

[53] A. S. Perelson, P. Essunger, M. Markowitz, and D. D. Ho, How long should treatment
be given if we had an antiretroviral regimen that completely blocked HIV replication?, in
XIth Intl. Conf. on AIDS Abstracts, 1996.

[54] A. S. Perelson, D. E. Kirschner, and R. De Boer, Dynamics of HIV infection of CD4+ T
cells, Math. Biosci., 114 (1993), pp. 81–125.

[55] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho, HIV-1
dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,
Science, 271 (1996), pp. 1582–1586.

[56] A. N. Phillips, Reduction of HIV concentration during acute infection: Independence from a
specific immune response, Science, 271 (1996), pp. 497–499.

[57] G. Reibnegger, D. Fuchs, A. Hausen, E. R. Werner, M. P. Dierich, and H. Wachter,
Theoretical implications of cellular immune reactions against helper lymphocytes infected
by an immune system retrovirus, Proc. Nat. Acad. Sci. U.S.A., 84 (1987), pp. 7270–7274.

[58] N. Sachsenberg, A. S. Perelson, S. Yerly, G. A. Schockmel, D. Leduc, B. Hirschel, and

L. Perrin, Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured
by ki-67 antigen, J. Exp. Med., 187 (1998), pp. 1295–1303.

[59] D. Schenzle, A model for AIDS pathogenesis, Stat. Med., 13 (1994), pp. 2067–2079.
[60] R. Schuurman, M. Nijhuis, R. Van-Leeuwen, P. Schipper, D. De-Jong, P. Collis, S. A.

Danner, J. Mulder, C. Loveday, and C. Christopherson, Rapid changes in human im-
munodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations
in persons treated with lamivudine (3TC), J. Infect. Dis., 171 (1995), pp. 1411–1419.

[61] N. I. Stilianakis, C. A. B. Boucher, M. D. DeJong, R. VanLeeuwen, R. Schuurman,

and R. J. DeBoer, Clinical data sets on human immunodeficiency virus type 1 reverse
transcriptase resistant mutants explained by a mathematical model, J. Virol., 71 (1997),
pp. 161–168.



44 ALAN S. PERELSON AND PATRICK W. NELSON

[62] N. I. Stilianakis, K. Dietz, and D. Schenzle, Analysis of a model for the pathogenesis of
AIDS, Math. Biosci., 145 (1997), pp. 27–46.

[63] N. I. Stilianakis, D. Schenzle, and K. Dietz, On the antigenic diversity threshold model for
AIDS, Math. Biosci., 121 (1994), pp. 235–247.

[64] W. Y. Tan and H. Wu, Stochastic modeling of the dynamics of CD4+ T-cell infection by HIV
and some Monte Carlo studies, Math. Biosci., 147 (1997), pp. 173–205.

[65] X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch, J. D.

Lifson, S. Bonhoeffer, M. A. Nowak, and B. H. Hahn, Viral dynamics in human
immunodeficiency virus type 1 infection, Nature, 373 (1995), pp. 117–122.

[66] L. M. Wein, R. M. D’Amato, and A. S. Perelson, Mathematical considerations of antiretro-
viral therapy aimed at HIV-1 eradication or maintenance of low viral loads, J. Theoret.
Biol., 192 (1998), pp. 81–98.

[67] D. O. White and F. J. Fenner, Medical Virology, Academic Press, New York, 1994.
[68] S. Wolinsky, B. T. Korber, A. U. Neumann, M. Daniels, K. J. Kunstman, A. J. Whet-

sell, M. R. Furtado, Y. Cao, D. D. Ho, and J. T. Safrit, Adaptive evolution of human
immunodeficiency virus-type 1 during the natural course of infection, Science, 272 (1996),
pp. 537–542.

[69] J. K. Wong, M. Hezareh, H. F. Gunthard, D. V. Havlir, C. C. Ignacio, C. A. Spina, and

D. D. Richman, Recovery of replication-competent HIV despite prolonged suppression of
plasma viremia, Science, 278 (1997), pp. 1291–1295.


