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The Mathematics of
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Abstract. The Gaussian plume model is a standard approach for studying the transport of airborne
contaminants due to turbulent diffusion and advection by the wind. This paper reviews
the assumptions underlying the model, its derivation from the advection-diffusion equation,
and the key properties of the plume solution. The results are then applied to solving an
inverse problem in which emission source rates are determined from a given set of ground-
level contaminant measurements. This source identification problem can be formulated as
an overdetermined linear system of equations that is most easily solved using the method
of least squares. Various generalizations of this problem are discussed, and we illustrate
our results with an application to the study of zinc emissions from a smelting operation.
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1. Introduction. Atmospheric dispersion modeling refers to the mathematical
description of contaminant transport in the atmosphere. The term dispersion in this
context is used to describe the combination of diffusion (due to turbulent eddy motion)
and advection (due to the wind) that occurs within the air near the Earth’s surface.
The concentration of a contaminant released into the air may therefore be described by
the advection-diffusion equation, which is a second-order partial differential equation
(PDE) of parabolic type.

This problem is an excellent example of interdisciplinary mathematics that has
direct application to problems with industrial relevance. In addition to forming the
basis for an extensive and active body of current research in atmospheric dispersion
modeling, this material is also ideal for inclusion in an upper-year undergraduate or
graduate course in mathematical modeling or scientific computing. The results dis-
cussed here may be used to illustrate basic techniques from PDEs (Green’s functions,
Laplace transforms, asymptotics, special functions), constrained optimization (linear
least squares), numerical analysis, and inverse problems. The suggested prerequisites
are an introductory course in PDEs that covers basic solution techniques such as
separation of variables and Laplace transforms, as well as some prior computing ex-
perience. With reference to the material in section 4 and a few of the more advanced
exercises, the reader would benefit from some experience with linear algebra and more
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350 JOHN M. STOCKIE

advanced knowledge of PDEs. We employ the software package MATLAB for the nu-
merical simulations in this paper, and have posted the relevant codes on the website
http://www.math.sfu.ca/∼stockie/atmos. On this site we also provide supplemental
notes that give detailed derivations of numerous results appearing in the main text,
solutions to selected exercises, and MATLAB code.

Since the pioneering work of Roberts [32] and Sutton [39], analytical and approx-
imate solutions for the atmospheric dispersion problem have been derived under a
wide range of simplifying assumptions, as well as various boundary conditions and
parameter dependencies. These analytical solutions are especially useful to engineers
and environmental scientists who study pollutant transport, since they allow param-
eter sensitivity and source estimation studies to be performed. The simplest of these
exact solutions is called the Gaussian plume, corresponding to a continuous point
source that emits contaminants into a unidirectional wind blowing in a domain of in-
finite extent. This Gaussian plume solution, along with numerous variants, has been
incorporated into industry-standard software packages that are used for monitoring
and regulatory purposes. Gaussian plume models have been applied extensively in
the study of emissions from large industrial operations as well as a variety of other
applications including ash release from volcanic eruptions [41]; seed, pollen, and insect
dispersal [19, 23, 47]; and odor propagation from livestock facilities [37]. The same
approach (with slight modifications) may also be used to describe the flow of gas or
liquid in porous soils and rocks, with applications to oil reservoirs, groundwater, and
pollutant transport in aquifers, etc. [12, 13]. There has been a great deal of recent
interest in applications relating to nuclear and biological contaminant release [18, 43],
for which the importance of analytical approaches is nicely summed up in a review
article by Settles: “plume dispersion modeling is central to homeland security” [34].

Our aim in this paper is to guide the reader through the entire mathematical
modeling process, from the original conception of the model to the interpretation of
results in the context of an actual industrial application. We begin by deriving the
Gaussian plume solution to the advection-diffusion equation, investigating its mathe-
matical properties, and drawing conclusions regarding the usefulness and limitations
of the Gaussian plume approach. The model is illustrated using a simplified version
of a real industrial emissions scenario in which airborne contaminants are released
from a smelting operation such as that pictured in Figure 1.1. We then move onto
the study of the associated inverse problem in which our objective is to estimate
the unknown contaminant emission rate(s) given a series of ground-level concentra-
tion measurements. This inverse problem is formulated as an overdetermined linear
system of equations, and the resulting solution is obtained using a constrained linear
least squares algorithm. We discuss the conditioning and well-posedness of the inverse
problem, and relate these aspects back to the original source identification problem
and their significance in regulatory applications.

Throughout the discussion of the plume model and associated inverse problem, we
provide details of various derivations that, although elementary, are not easily found in
the literature or textbooks on the subject. We also emphasize that our focus here is on
simple analytical solutions to the atmospheric dispersion problem and that simplicity,
understandability in physical terms, and acceptance by practitioners are sometimes
much more important in a regulatory environment than complex solutions that may
require use of more advanced mathematical or numerical techniques. Consequently,
we hope that this material will be a useful reference not only for applied and industrial
mathematicians, but also for environmental engineers and other practitioners who use
Gaussian plume and related models in their everyday work.

http://www.math.sfu.ca/~stockie/atmos
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Fig. 1.1 A photograph of emissions from the Inco Superstack (in Sudbury, ON, Canada) that il-
lustrates the three main contributions to atmospheric contaminant transport: advection
from the wind; diffusion from turbulent eddy motion; and deposition owing to gravitational
settling.

2. Governing Equations. A readable introduction to atmospheric dispersion
modeling is available on Wikipedia [45], while a more in-depth treatment including
details about analytical solutions can be found in the books by Arya [1] or Seinfeld
and Pandis [33]. We will restrict our attention at the outset to the transport of a sin-
gle contaminant whose mass concentration (or density) at location �x = (x, y, z) ∈ R

3

[m] and time t � 0 [s] can be described by a smooth function C(�x, t) [kg/m3]. The
law of conservation of mass for C may be expressed in differential form as

∂C

∂t
+∇ · �J = S,(2.1)

where S(�x, t) [kg/m3 s] is a source or sink term and the vector function �J(�x, t) repre-
sents the mass flux [kg/m2 s] of contaminant owing to the combined effects of diffusion
and advection. The diffusive contribution to the flux arises from turbulent eddy mo-
tion in the atmosphere, for which a full description can be found in texts such as
[1, 33]. The main result is that atmospheric diffusion may be assumed to follow Fick’s
law, which states that the diffusive flux is proportional to the concentration gradient
or �J

D
= −K∇C. The negative sign ensures that the contaminant flows from regions

of high concentration to regions of low concentration, and the diffusion coefficient
K(�x) = diag(Kx,Ky,Kz) [m

2/s] is a diagonal matrix whose entries are the turbulent
eddy diffusivities that in general are functions of position. The second contribution
to the flux is due to simple linear advection by the wind, which can be expressed
as �J

A
= C�u, where �u [m/s] is the wind velocity. By adding these two contributions

together, we obtain the total flux �J = �J
D
+ �J

A
= C�u − K∇C, which after substi-

tution into the equation of conservation of mass (2.1) yields the three-dimensional
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Fig. 2.1 A contaminant plume emitted from a continuous point source, with wind direction aligned
with the x-axis. Profiles of concentration are given at two downwind locations (vertical
in red, horizontal in blue) and the Gaussian shape of the plume cross-sections are shown
relative to the plume centerline.

advection-diffusion equation

∂C

∂t
+∇ · (C�u) = ∇ · (K∇C) + S.(2.2)

We next make a number of simplifying assumptions that will permit us to derive
a closed-form analytical solution:

A1. The contaminant is emitted at a constant rate Q [kg/s] from a single point
source �x = (0, 0, H) located at heightH above the ground surface, as depicted
in Figure 2.1. Then the source term may be written as

S(�x) = Qδ(x) δ(y) δ(z −H),(2.3)

where δ(·) is the Dirac delta function. Note that the units of the delta function
are [m−1]. For the stack-like configuration pictured in Figure 2.1 the height
is actually an effective height H = h + δh, which is the sum of the actual
stack height h and the plume rise δh that arises from buoyant effects.

A2. The wind velocity is constant and aligned with the positive x-axis so that
�u = (u, 0, 0) for some constant u � 0. We relax this assumption later on in
section 4.3 to allow a uniform time-varying wind field �u = �u(t), with |�u| � 0.

A3. The solution is steady state, which is reasonable if the wind velocity and all
other parameters are independent of time and the time scale of interest is
long enough.

A4. The eddy diffusivities are functions of the downwind distance x only, and
diffusion is isotropic so that Kx(x) = Ky(x) = Kz(x) =: K(x).

A5. The wind velocity is sufficiently large that diffusion in the x-direction is much
smaller than advection; then the term Kx∂

2
xC can be neglected.
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A6. Variations in topography are negligible so that the ground surface can be
taken as the plane z = 0.

A7. The contaminant does not penetrate the ground.
Making use of assumptions A1–A6, (2.2) reduces to

u
∂C

∂x
= K

∂2C

∂y2
+K

∂2C

∂z2
+Qδ(x) δ(y) δ(z −H),(2.4a)

and we are only concerned with the solution for values of x, z ∈ [0,∞) and y ∈
(−∞,∞). In order to obtain a well-posed problem, we must supplement the PDE
with an appropriate set of boundary conditions, namely,

C(0, y, z) = 0, C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0.(2.4b)

The first condition is a consequence of the unidirectional wind and the assumption
that there are no contaminant sources for x < 0. The remaining conditions at infinity
are consistent with the requirement that the total mass of contaminant must remain
finite. According to assumption A7, the vertical flux at the ground must vanish, which
leads to the final boundary condition

K
∂C

∂z
(x, y, 0) = 0.(2.4c)

When taken together, (2.4a)–(2.4c) represent a well-posed problem for the steady-
state contaminant concentration C(x, y, z).

An equivalent formulation of this problem can be found by eliminating the source
term from the PDE and instead introducing a delta function term into the boundary
condition [10]:

u
∂C

∂x
= K

∂2C

∂y2
+K

∂2C

∂z2
,(2.5a)

C(0, y, z) =
Q

u
δ(y)δ(z −H),(2.5b)

C(∞, y, z) = 0, C(x,±∞, z) = 0, C(x, y,∞) = 0,(2.5c)

K
∂C

∂z
(x, y, 0) = 0.(2.5d)

The equivalence between problems (2.4) and (2.5) for x > 0 is presented as a theorem
in [38, p. 59]. It is this second form of the governing equations that will be used in
deriving the analytical solution in the next section.

Exercise 1. Prove Stakgold’s theorem [38, p. 59]. Show that (2.5) is consistent
with the alternate formulation in (2.4) by integrating the PDE (2.4a) over the interval
x ∈ [−d, d], letting d → 0+, and then imposing C ≡ 0 for x < 0. Explain why the
boundary conditions for the two problems are consistent.

Exercise 2. Investigate assumption A5 by considering the steady three-dimensional
advection-diffusion problem in the same form as (2.5), except that the term ∂2

xC is
retained and K is held constant. Nondimensionalize the PDE and initial/boundary
conditions using the change of variables x̃ = (K/uH2)x, ỹ = y/H , z̃ = z/H , and

C̃ = (uH2/Q)C (a similar rescaling of variables is used in other studies such as [25]
and [31]). Compare the relative sizes of terms in the equation for typical values of the
parameters given in Table 3.1, and consequently show that neglecting the diffusion
term in the x-direction is a reasonable approximation. Hint: You will need to make
use of the delta function scaling property δ(αx) = δ(x)/α.
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3. Derivation of the Gaussian Plume. Most books and articles aimed at practi-
tioners present the Gaussian plume solution as a fait accompli and avoid both working
through the details of the derivation and discussing the underlying assumptions (for
example, [15, Chaps. 3 and 7] and [33]). The atmospheric dispersion problem is de-
rived in a few more mathematical treatises such as Tayler [40, Chap. 4], but even then
a number of important details are omitted. Our main aim in this section is therefore
to lead the reader through the derivation in enough detail that the problem can be
generalized to other more complicated situations.

The eddy diffusion coefficients in the atmospheric boundary layer are strong func-
tions of downwind distance, not to mention that they vary with weather conditions
and time from release, and consequently they are difficult to determine in practice.
It is therefore common practice to replace x with the new independent variable

r =
1

u

∫ x

0

K(ξ) dξ,(3.1)

which has units of [m2]. We will see later on that r is a constant multiple of the
variance of the concentration distribution, which is introduced later in section 3.3
(and denoted by σ). This change of variables eliminates the K coefficients in (2.5a),
leading to the following constant coefficient problem for c(r, y, z) := C(x, y, z):

∂c

∂r
=

∂2c

∂y2
+

∂2c

∂z2
.(3.2)

The boundary conditions for c are identical to those for C from (2.5b)–(2.5d), except
that x is replaced with r.

We next apply the method of separation of variables to (3.2), assuming that the
dependence of the solution on y and z can be separated according to1

c(r, y, z) =
Q

u
a(r, y) · b(r, z).(3.3)

We then obtain two reduced dimension problems that have the form of two-dimensional
diffusion equations:

∂a

∂r
=

∂2a

∂y2
for 0 � r < ∞ and −∞ < y < ∞,(3.4a)

a(0, y) = δ(y), a(∞, y) = 0, a(r,±∞) = 0,(3.4b)

and

∂b

∂r
=

∂2b

∂z2
for 0 � r < ∞ and 0 < z < ∞,(3.5a)

b(0, z) = δ(z −H), b(∞, z) = 0, b(r,∞) = 0,
∂b

∂z
(r, 0) = 0.(3.5b)

In both problems, the variable r can be viewed as a time-like variable and so the
boundary conditions at r = 0 (which contain the delta functions) act as initial condi-
tions for the respective diffusion equations.

Exercise 3. Derive (3.4) and (3.5) from (2.5), using the change of variables in
(3.1) and assuming a separable solution of the form (3.3).

1This is a slight modification of the “usual” separation of variables approach where one would
normally assume a fully separable solution of the form c(r, y, z) = R(r)Y (y)Z(z).
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3.1. Solution using Laplace Transforms. There are many methods that can be
used for solving problems (3.4) and (3.5). We choose here to use Laplace transforms
because this approach is most easily extended to deal with more general boundary
conditions, as we will see later in section 3.6.

We begin with the problem for a(r, y) in (3.4) and take the Laplace transform of
the PDE in r to get

ρâ− a(0, y) =
∂2â

∂y2
,

where â(ρ, y) := Lr{a(r, y)} =
∫∞
0

e−ρr a(r, y) dr and ρ is the transform variable.
Applying the source boundary condition (3.4b), we obtain the following ordinary
differential equation (ODE) for â:

∂2â

∂y2
− ρâ = −δ(y).

Next, take the Laplace transform in y,

η2ˆ̂a− ηâ(ρ, 0)− ∂â

∂y
(ρ, 0)− ρˆ̂a = −1,

where ˆ̂a(ρ, η) := Ly{â(ρ, y)} =
∫∞
0

e−ηy â(ρ, y) dy and η is the transform variable. For
the moment, we restrict ourselves to values of 0 � y < ∞, but we will see shortly that
symmetry permits the solution to be extended over the entire range −∞ < y < ∞.
This last equation can be solved to obtain

ˆ̂a(ρ, η) =
ηc1 + c2
η2 − ρ

,

where we have defined c1 = â(ρ, 0) and c2 = ∂yâ(ρ, 0)− 1. We then apply the inverse
transform in η to get

â(ρ, y) = c1 cosh(
√
ρy)− c2√

ρ
sinh(

√
ρy)

=
c1
2

(
e
√
ρy + e−

√
ρy
)
− c2

2
√
ρ

(
e
√
ρy − e−

√
ρy
)
.

In order that â → 0 as y → ∞, it is necessary that c1 = c2/
√
ρ, after which the above

formula for â reduces to

â(ρ, y) =
c2√
ρ
e−

√
ρy.

Assuming for the moment that c2 is independent of ρ, we may apply the inverse trans-
form in ρ to get a(r, y) = (c2/

√
πr) exp(−y2/4r). By employing the delta function

identity δ(y) = lim
r→0

exp(−y2/4r)/√4πr, we find that c2 =
1
2 is in fact a constant and

that

a(r, y) =
1√
4πr

e−y2/4r.(3.6)

We have so far restricted ourselves to 0 � y < ∞ in order to apply the Laplace trans-
forms. However, the original problem as stated in (3.4) clearly has even symmetry
about y = 0, and since the solution (3.6) is also an even function, then it is possible
to simply extend the domain of validity for a(r, y) to y ∈ (−∞,∞).
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We now move on to the solution of (3.5) for b(ρ, z) and apply the Laplace trans-
form in r of the PDE to get

∂2b̂

∂z2
− ρb̂ = −δ(z −H),

where b̂(ρ, z) := Lr{b(r, z)}. Taking the Laplace transform in z and defining
ˆ̂
b(ρ, ζ) :=

Lz{b̂(ρ, z)}, we find that

ζ2
ˆ̂
b− ζb̂(ρ, 0)− ∂b̂

∂z
(ρ, 0)− ρ

ˆ̂
b = −e−ζH .

After applying the transformed Neumann boundary condition ∂z b̂(ρ, 0) = 0, we can
solve for

ˆ̂
b(ρ, ζ) =

ζb̂(ρ, 0)− e−ζH

ζ2 − ρ

and apply the inverse transform in ζ to obtain

b̂(ρ, z) = b̂(ρ, 0) cosh(
√
ρz)− 1√

ρ
sinh(

√
ρ(z −H)).

We then impose the condition that b̂ → 0 as z → ∞, which means that b̂(ρ, 0) =
exp(−√

ρH)/
√
ρ and hence

b̂(ρ, z) =
1

2
√
ρ

(
e−

√
ρ(z−H) + e−

√
ρ(z+H)

)
.

Finally, applying the inverse transform in ρ yields

b(r, z) =
1√
4πr

(
e−(z−H)2/4r + e−(z+H)2/4r

)
.(3.7)

The contaminant concentration can now be determined by substituting (3.6) and
(3.7) into (3.3):

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
+ exp

(
− (z +H)2

4r

)]
.(3.8)

This equation is commonly referred to as the Gaussian plume solution for the advec-
tion-diffusion equation, owing to the fact that the exponential dependence on both
y and z is similar to that of a Gaussian-type function. The exponential character
of the solution in y and z is clearly depicted in the concentration profiles shown in
Figure 2.1. We mention in conclusion that identical expressions for a and b can be
found using other approaches based on infinite series and Fourier transforms [14], as
well as similarity methods [26, p. 144], all of which are interesting illustrations in the
use of alternative PDE solution techniques.

Exercise 4. Integrate (3.8) in y and so derive a simpler cross-wind averaged
solution that depends on x and z only. This is a formula that is used commonly by
practitioners for regulatory applications; see [1, 16], for example.

3.2. Alternate Derivation Using Green’s Functions. The Gaussian plume so-
lution (3.8) may also be derived using a Green’s function approach, which we briefly
outline next. More details on the derivation of Green’s functions can be found in the
classic PDE books by Carslaw and Jaeger [5, Chap. 14] and Crank [7].
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To this end, the solution to the problem (3.4) can be written a(r, y) =∫∞
−∞ δ(η)Ga(r, y; 0, η) dη, where the Green’s function or fundamental solution is

Ga(r, y; ρ, η) =
1√

4π(r − ρ)
exp

(
− (y − η)2

4(r − ρ)

)
.

The solution for b(r, z) is slightly more complicated because of the Neumann boundary
condition, which suggests extending the problem on the half-interval z � 0 to the
entire real line and then applying the method of images. The Green’s function for
this modified problem is

Gb(r, z; ρ, ζ) =
1√

4π(r − ρ)

[
exp

(
− (z − ζ)2

4(r − ρ)

)
+ exp

(
− (z + ζ)2

4(r − ρ)

)]
,

in terms of which the solution may be written as b(r, z) =
∫∞
−∞ δ(ζ−H)Gb(r, z; 0, ζ) dζ.

A straightforward evaluation of the two integrals for a(r, y) and b(r, z) yields expres-
sions that are identical to the ones obtained using Laplace transforms in the previous
section.

The interested reader is encouraged to delve more into the fascinating topic of
Green’s functions by referring to the book by Duffy [9], which contains a wealth of
applications drawn from physical systems, including diffusion problems very similar to
those ones studied here. Another biographical study of George Green by Cannell [4]
provides a historical perspective that is sure to prove stimulating for students being
introduced to Green’s functions for the first time. Of particular interest are Cannell’s
Chapter 10 and Appendix VIb, which provide fascinating accounts of the influence
that Green’s work had on the work of many 19th and 20th century “giants” from the
fields of mathematics and physics.

3.3. Plume Properties: Constant and Variable Diffusivity. In this section we
discuss the specification of the eddy diffusion coefficient K(x), which is extremely
important in applications. It is important to remember that the Gaussian plume
solution is only strictly valid when K is a constant; however, in order to reproduce
observed contaminant distributions, practitioners have found that it is necessary to
allow K to vary with the downwind distance x, and the precise form of K(x) (and
hence also r(x)) is determined by fitting with experimental observations.

It is standard practice in the atmospheric science literature to replace the variable
r in (3.8) with the closely related expression

σ2(x) =
2

u

∫ x

0

K(ξ) dξ = 2r,(3.9)

where σ is commonly referred to as the standard deviation of the (Gaussian) concen-
tration distribution. These σ coefficients are much easier to determine experimentally
than the eddy diffusivities. A variety of functional forms have been proposed, with
one of the most common being a simple power law σ2(x) = axb [33]. Experimental
measurements have been used to estimate the coefficients a and b under a variety
of atmospheric conditions, and typical values are shown in Table 3.1. This type of
dependence of σ on downwind distance can be justified by noting that as one moves
further from a source, the plume becomes broader and hence σ must increase (refer
to Figure 2.1).

It is interesting to point out a common inconsistency in the way that the Gaussian
plume model is applied both in the literature and in many regulatory applications.
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Table 3.1 Parameter values used in the Gaussian plume model, based on the zinc smelter studied
in [24].

Parameter Symbol Value Units
Wind speed u 5 m/s
Stack height Hs [15, 35, 15, 15] m
Emission rate Qs [1.1, 2.5, 0.16, 0.16] × 10−3 kg/s
Diffusion parameter a 0.33 m2−b

Diffusion parameter b 0.86 –
Settling velocity wset 2.7× 10−3 m/s
Deposition velocity wdep 5× 10−3 m/s
Viscosity of air µ 1.8× 10−5 kg/m s
Gravitational acceleration g 9.8 m/s2

Particle density ρ 3500 kg/m3

Particle radius R 2.5× 10−6 m

According to the definition of σ, the eddy diffusivity can be written in the formK(x) =
1
2 u∂xσ

2. If we consider the special case when K is constant, then σ2 = 2Kx/u, which

means that σ ∝ x1/2. Even when the experimentally measured values of standard
deviation follow a power law relationship, they typically do not correspond to an
exponent b = 1

2 ; in fact, experiments suggest that b > 0.70 under most conditions.
Nevertheless, it is common practice to determine the eddy diffusivity by way of the
formula K(x) = uσ2/2x, where σ2(x) is given by a power law or other experimentally
determined fit. This inconsistency is discussed in more detail by Llewelyn [22] and will
come into play in section 3.6, where incorporating the effects of settling and deposition
of contaminant particles yields a solution that requires specifying both σ2 and K.

For the sake of simplicity, we assume in the remainder of this section that K is
constant so that (3.1) can be integrated to obtain r = Kx/u. In order to understand
the typical behavior of the plume solution (3.8), we then consider two cases where
the source is either located on the ground (H = 0) or else slightly elevated above
ground level (H = 2). Values of the remaining physical parameters are taken to be
Q = 1, u = 1, and K = 1, and the concentrations for the two source heights are
displayed as contour plots in Figures 3.1 and 3.2, respectively. For both values of
H , the left-hand contour plot demonstrates that the maximum value of concentration
occurs at the same position (0, 0, H) as the source, and that the contaminant is swept
downwind from there into an elongated “plume” shape. The right-hand plot in each
figure depicts the concentration in the plane z = 0 and shows that the peak ground-
level concentration occurs at the origin when H = 0 (Figure 3.1) or else is shifted to a
location further downwind when the source is elevated (Figure 3.2). This behavior is
intuitively obvious from a physical standpoint, and is a qualitative validation of the
plume solution.

A slightly simpler expression for the ground-level concentration can be obtained
by setting z = 0 in the concentration solution, yielding

C(x, y, 0) =
Q

2πKx
exp

(
−u(y2 +H2)

4Kx

)
.(3.10)

We observe that when the source is elevated (H > 0), the concentration attains a max-
imum value of Cmax = 2Q/(πuH2e) at the downstream location xmax = uH2/(4K)
along the plume centerline y = 0 (indicated by a black circle in Figure 3.2(b)).
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Fig. 3.1 Contour plots of concentration C(x, y, z) for a source at ground level (H = 0): (left) in the
vertical plane y = 0; (right) in the horizontal plane z = 0. The location of the contaminant
source is indicated by a red square.
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Fig. 3.2 Contour plots of concentration C(x, y, z) for an elevated source (H = 2), but otherwise the
same as Figure 3.1. The location of the peak ground-level concentration is marked on the
right with a black circle.

It is worthwhile noticing that in the limit of vanishing velocity,

lim
u→0+

C(x, y, z) =
Q

2πKx
,(3.11)

which seemingly contradicts a common perception in the literature that the Gaussian
plume solution breaks down when u = 0 [2, 16, 35, 42]. The reason for this confusion
is that the plume solution is most often written in terms of the variable r as in (3.8),
and so can appear to have a singularity as u → 0 if the dependence of r on velocity
via r = 1

u

∫ x

0 K(ξ) dξ is forgotten.
Nevertheless, it is essential to remember that the Gaussian plume solution only

makes physical sense when the wind velocity is nonzero because of assumption A5,
which neglects the diffusion term in the x-direction relative to the advection term.
When u = 0, the advection term vanishes and the concentration is governed instead
by the steady diffusion equation (or Poisson equation)

∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2
= −Q

K
δ(x)δ(y)δ(z −H),

Juan-Miguel
Rectángulo



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

360 JOHN M. STOCKIE

which has the following solution on the half-space x > 0:

C(x, y, z) =
Q

4πK

(
1√

x2 + y2 + (z −H)2
+

1√
x2 + y2 + (z +H)2

)
.(3.12)

Notice that this result only holds when K is a constant, because ∂x(K∂xC) �= K∂2
xC

if K depends on x. The steady-state profile (3.12) has asymptotic behavior C ∼
Q/(2πKx) as x → ∞, which is identical to that for the zero-velocity limit (3.11) of
the Gaussian plume solution.

A more common approach for dealing with very low or calm winds is to ap-
proximate the plume by a series of Gaussian puffs, which are solutions to the time-
dependent advection-diffusion equation having a delta function source of the form
δ(x)δ(y)δ(z−H)δ(t). This puff solution is then integrated in time yielding an expres-
sion that can be used whether or not winds are calm. An example of the puff solution
for an instantaneous release at t = 0 is given in section 3.5.6, and more details can be
found in [22, 30].

3.4. Application: Emissions from Multiple Sources. We now apply the Gaus-
sian plume solution to a simplified version of an actual emissions scenario studied in
[24], where a zinc smelting operation has four major sources that release zinc parti-

cles into the atmosphere. The sources have locations �Xs = (Xs, Ys, Hs) and emission
rate Qs for s = 1, . . . , 4, and are depicted in Figure 3.3 by the points labeled S1 to
S4. The positive x-axis is aligned with the primary wind direction and the heights
and emission rates for each source are listed in Table 3.1. The contribution from an
individual source Ss to the contaminant concentration at any point (x, y, z) is then
given by the Gaussian plume solution, which we denote by C(x′s, y

′
s, z;Qs, Hs). Here

we have defined shifted coordinates

x′ = x−Xs and y′ = y − Ys,

so that the source location corresponds to x′s = y′s = 0 for each s. The total concen-
tration resulting from all four sources is simply given by the sum

C
T
(x, y, z) =

4∑
s=1

C(x′s, y
′
s, z;Qs, Hs).

In Figure 3.3, we present two concentration contour plots for the individual
sources S1 and S2 and a third plot with S3 and S4 displayed together. The superpo-
sition of all four sources is shown separately in Figure 3.4. The largest ground-level
concentration appears downwind from source S1, with weaker peaks occurring down-
wind of S2. It is interesting to note that even though S2 has by far the largest emission
rate, it makes a smaller contribution to the ground-level concentration because it is
at a much higher elevation. The weaker sources at S3 and S4 have a relatively small
effect on the total concentration. These effects are consistent with physical intuition
which suggests that increasing the height of a given source should decrease the ground-
level deposition from that source, and vice versa. Furthermore, there should exist a
“cross-over point” where the deposition from a high-Q source is exceeded by that of a
low-Q/low-H source when the elevation of the first source exceeds some critical value;
this and other similar effects are ideal topics for numerical experiments that can serve
to develop intuition about contaminant emission problems.

The code that generates these plots is provided as three separate MATLAB files:
• setparams.m: assigns all values of the physical and numerical parameters;
• gplume.m: calculates the concentration using the Gaussian plume solution;
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• forward.m: main program that calculates and plots the concentration (calls
setparams and gplume).

Exercise 5. Redo the forward calculation of Figures 3.3 and 3.4 by adding noise
to the source emission rates of magnitude (a) ±10%; (b) ±20%. Compare the results
and indicate the relative influence of noise on your computed concentrations.

3.5. A Menagerie of Plume Solutions. In this section we present a number of
other Gaussian plume–type solutions that generalize the expression for concentration
derived in section 3 by modifying either the boundary conditions, emission source
type, or eddy diffusivities.

3.5.1. Anisotropic Eddy Diffusivities. When the eddy diffusion coefficients Ky

and Kz are not equal, then it is helpful to define the following parameters:
ry,z(x) = 1

u

∫ x

0 Ky,z(ξ) dξ. Using these definitions and working through the same
steps as before, we find that

C(x, y, z) =
Q

4πu
√
ryrz

exp

(
− y2

4ry

) [
exp

(
− (z −H)2

4rz

)
+ exp

(
− (z +H)2

4rz

)]
,

(3.13)

which clearly reduces to (3.8) when ry = rz .

3.5.2. Perfectly Absorbing Ground. When the reflecting boundary condition
(2.5d) is replaced by a perfectly absorbing condition at the ground, c(r, y, 0) = 0,
then a slight modification of the method of images for the derivation of b(r, z) yields

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

) [
exp

(
− (z −H)2

4r

)
− exp

(
− (z +H)2

4r

)]
.(3.14)

3.5.3. Inversion Layer. In the atmospheric boundary layer, the air temperature
most often decreases with increasing altitude. However, there are situations where
an inversion occurs, which corresponds to a layer in which the temperature increases
with altitude and hence is stable and resistant to vertical mixing. These inversion
layers act as reflecting boundaries and are notorious for trapping smog above cities
such as Los Angeles and Mexico City [46]. If we replace the condition at infinity
c(r, y,∞) = 0 with a Neumann boundary condition K ∂zc(r, y,D) = 0 corresponding
to an inversion layer at height D above the ground, then the solution can be written
as an infinite series of the form

c(r, y, z) =
Q

uD
√
πr

exp

(
−y2

4r

) [
1

2
+

∞∑
n=1

cos
(nπz

D

)
cos

(
nπH

D

)
exp

(
−
(nπ
D

)2
r

)]
.

For a more detailed discussion of the solution of this problem, refer to [33] or [40,
Ex. 4.1(b)].

3.5.4. Line Sources. A common application of atmospheric dispersion models is
in the estimation of vehicle emissions from cars driving along busy highways, which
can be approximated as continuous line sources. If a road is long and straight and runs
perpendicular to the wind direction, then the road can be approximated by a linear
source of infinite length along the y-axis, which corresponds to the boundary condition
c(0, y, z) = (Q

L
/u)δ(z). The quantity Q

L
[kg/ms] is a constant emission rate per unit

length of road, and must be distinguished from the emission rate parameter Q that
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we have been using so far. The solution to the advection-diffusion equation with this
new boundary condition is

c(r, y, z) =
Q

L

2πur
exp

(
−z2

4r

)∫ ∞

−∞
exp

(
−y2

4r

)
dy =

Q
L√
πu

exp

(
−z2

4r

)
.(3.15)

Notice that we have taken H = 0 here since roads are located at ground level.
A more realistic scenario than the road of infinite extent is a road of finite length L,

which can be modeled using a boundary condition of the form c(0, y, z) = (Q
L
/u)δ(z)

when |y| � 1
2L, and c(0, y, z) = 0, otherwise. The solution to this problem takes the

form [8]

c(r, y, z) =
Q

L

2u
√
πr

exp

(
−z2

4r

) [
erf

(
y + L/2

2
√
r

)
− erf

(
y − L/2

2
√
r

)]
,(3.16)

where erf(x) = 2π−1/2
∫ x

0
e−ξ2 dξ is the error function. A detailed discussion of line

source emission modeling can be found in [28].

3.5.5. Height-Dependent Parameters. In many applications, the contaminant
plume may extend a significant distance above the ground and it is therefore important
to take into account the vertical structure of the atmosphere. The wind speed and
diffusion coefficients are then taken to be functions of the vertical coordinate, with
the most common form being the power laws [21]

u(z) = uoz
α, Ky(x, z) = ky(x)z

β , and Kz(xf, z) = kz(x)z
β .(3.17)

By defining functions ry,z =
1
uo

∫ x

0 ky,z(ξ) dξ as in section 3.5.1, the following expres-
sion can be derived for concentration:

C(x, y, z) =
Q

2uo
√
πry

exp

(
− y2

4ry

)
(zH)(1−β)/2

λrz
exp

(
−zλ +Hλ

λ2rz

)
I−ν

(
2(zH)λ/2

λ2rz

)
,

(3.18)

where λ = 2 + α − β, ν = (1 − β)/λ, and I−ν is the modified Bessel function of the
first kind of order −ν. It is possible to show (see Exercise 6) that (3.18) reduces to
(3.13) in the case when α = β = 0.

Exercise 6. Use the Bessel function identity I−1/2(x) = (2/πx)
1/2

cosh(x) to show
that (3.18) reduces to (3.13) in the case when the wind velocity is constant and eddy
diffusivities are functions of x only.

Exercise 7 (adapted from Tayler [40, pp. 197–198]). Consider a simplified version
of the problem from section 3.5.5 obeying the reduced-dimensional PDE u(z) ∂xC̄ =
∂z(K(z)∂zC̄) in terms of the cross-wind averaged concentration C̄(x, z) =∫∞
−∞ C(x, y, z) dy. Assume that the height-dependent parameters have the simpler

form u(z) = zα and K(z) = Kz(z) = zβ for α and β positive constants, and take the
source height H = 1. Perform the change of variables z = sp and C̄(x, z) = sν C(x, s),
and hence show that the Laplace transform Ĉ = Lx{C} of the new dependent variable
obeys

d2Ĉ
ds2

+
1

s

dĈ
ds

−
(
ξp2 +

ν2

s2

)
Ĉ = −pδ(s− 1),

where ξ is the transform variable, λ = 2 + α − β, ν = (1 − β)/λ, and p = 2/λ.
Determine the solution in terms of Bessel functions with an imaginary argument, and
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discuss the special case λ = 0. Finally, show that (3.18) is identical to your Bessel
function solution when uo = kz = 1 and the concentration is averaged cross-wind (in
the y-direction).

3.5.6. Gaussian Puff: Instantaneous and Time-Varying Sources. All situa-
tions considered so far assume that the source emits contaminant continuously in
time and at a constant rate. There are many applications in which the emissions are
either nearly instantaneous (occurring over a relatively short time interval), or are in-
termittent or time-varying. A common approach to dealing with such problems is to
take the time-dependent advection-diffusion equation (including the time-derivative
term on the left-hand side of (2.5a)) and consider an instantaneous puff of contam-
inant released at time t = 0. The source boundary condition is therefore replaced
with

c(0, y, z, t) =
Q

T

u
δ(y)δ(z −H)δ(t),(3.19)

where QT [kg] represents the total amount of contaminant emitted (note the difference
between the physical units of Q and Q

T
). The solution can be derived using an

approach similar to that we applied in section 3.1 to obtain [1, 22]

c(r, y, z, t)=
Q

T

8(πr)3/2
exp

(
− (x− ut)2+y2

4r

)[
exp

(
− (z−H)2

4r

)
+exp

(
− (z+H)2

4r

)]
,

(3.20)

which is typically referred to as the Gaussian puff solution. To deal with a time-
varying source, one simply needs to evaluate an appropriate integral (or sum) of puff
solutions in time.

Exercise 8. Show that the superposition of an infinite sequence of Gaussian puffs
in time yields the same concentration profile as the Gaussian plume. In other words,
integrate the puff formula (3.20) over the time interval t ∈ [0,∞) and compare with
the plume solution (3.8).

3.5.7. Other Generalizations. Many other variations of the Gaussian plume
solution have been derived for different emissions scenarios. For example, the line
source solution can be integrated to obtain sources of strip, area, and volume type
[6, 37]. Others have considered horizontal diffusion coefficients that depend on other
variables such as wind speed [29]. Lin and Hildemann [20] provide an extensive
summary of various plume-type solutions that are available in the literature.

Exercise 9 (adapted from [1, p. 218]). Emissions from burning agricultural waste
may be treated as a line source of 200 m in length that emits organic matter into
the air at a rate of 0.5 g/ms. The wind is steady and unidirectional and blows
with a velocity of 2.5 m/s, directed perpendicular to the line source. Estimate the
average ground-level concentrations of organic material at distances of 500 m and
5000 m downwind from the source and along the plume centerline. Assume that the
dispersion coefficient takes the form r(x) = axb with a = 0.16, b = 0.70, and that
x is measured in m. Compare the solution for the line source with a simpler (but
rougher) estimate based on replacing the line source with an equivalent point source
of strength 100 g/s (which is simply the product of the strength of the line source and
its length). Discuss your results.

3.6. Deposition and Settling: The Ermak Solution. In many practical situa-
tions, contaminant particles are more massive than air and so they tend to settle out
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of the atmosphere at a well-defined rate known as the settling velocity, wset [m/s].
For spherical particles of uniform size, the settling velocity can be approximated us-
ing Stokes’ law, wset = 2ρgR2/(9µ), where ρ is the particle density [kg/m3], R is the
particle radius [m], µ is the dynamic viscosity of air [kg/ms], and g is the gravita-
tional acceleration [m/s2]. To incorporate the effect of settling, we supplement the
advection velocity with a vertical component, �u = (u, 0,−wset), which means that the
advection-diffusion equation (3.2) becomes

∂c

∂r
− wset

K

∂c

∂z
=

∂2c

∂y2
+

∂2c

∂z2
.(3.21)

In addition to vertical settling within the atmosphere, observations suggest that
taking a no-flux condition at the ground surface is not a reasonable approximation; in-
stead, some portion of particles that reach the surface actually deposit on the ground
and are absorbed. Experimental measurements suggest that the vertical flux of con-
taminant particles at the surface is proportional to the surface concentration and so
may be written as (

K
∂c

∂z
+ wsetc

)∣∣∣∣
z=0

= wdepc|z=0 ,(3.22)

where wdep [m/s] is the so-called deposition velocity.
The earliest analytical solution to the Gaussian plume equations with deposition

was derived in [36]; however, Ermak [10] was the first to consider pollutant dispersion
with both deposition and settling. Ermak applied Laplace transform methods to
(3.21), (2.5d), and (3.22) and obtained the solution

c(r, y, z) =
Q

4πur
exp

(
−y2

4r

)
exp

(
−wset (z −H)

2K
− w2

set r

4K2

)
×
[
exp

(
− (z −H)2

4r

)
+ exp

(
− (z +H)2

4r

)
− 2wo

√
πr

K
exp

(
wo(z +H)

K
+
w2

o r

K2

)
erfc

(
z +H

2
√
r

+
wo

√
r

K

)]
,(3.23)

where wo := wdep− 1
2wset and erfc(x) = 1−erf(x) is the complementary error function.

This is a generalization of the Gaussian plume solution which clearly reduces to (3.8)
when wset = wdep = 0.

The most detailed derivation of the Ermak solution using transform methods
can be found in [44, pp. 358–361] in the context of a general discussion of diffusion
problems with radiation boundary conditions. The deposition-settling problem was
also studied by Fisher and McQueen [11] for the case of constant diffusivity, and they
derived a number of the corresponding properties that we discussed in section 3.3.
Llewelyn [22] solved a time-dependent version of the atmospheric dispersion problem
and showed that his solution reduces asymptotically to Ermak’s at steady state. An
alternative derivation using complex variable techniques was used by MacKay, McKee,
and Mulholland [25] for the problem with deposition but no settling. Interestingly,
similar solutions have been derived for other problems arising, for example, in diffusion
of ligand molecules in a protein matrix [27].

Exercise 10. Find Ermak’s paper in your library, and show that his formula
for the contaminant concentration (Eq. (5) from [10]) is dimensionally inconsistent.
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Hence, identify and correct two typographical errors in Ermak’s paper. Show that
the corrected formula is identical to our (3.23) by replacing his σ2

y = σ2
z = 2r and

relabeling other parameters appropriately.
Exercise 11. Derive the Ermak solution for (3.21), (3.22), (2.5b), and (2.5c) by

looking for a separable solution of the form

c(r, y, z) =
Q

u
a(r, y) b(r, z) exp

[
−wset (z −H)

2K
− w2

setr

4K2

]
.

This substitution replaces (3.3) and the extra exponential factor is specially chosen
so as to eliminate the gravitational settling term in the PDE. The resulting initial-
boundary value problem for a is identical, while that for b differs in that the Neumann
boundary condition is replaced with the radiation condition ∂zb = wob/K; hence,
the only difference here is in the Laplace transform solution for b. Show that your
solution is identical to (3.23). Hint: Some guidance on using Laplace transforms to
solve the diffusion equation with a radiation boundary condition can be found in [5,
sec. 14.2(II)].

Exercise 12. Generalize (3.23) to the case where the diffusivities Ky(x) andKz(x)
are not equal. This case is also considered by Ermak and an outline of his derivation
can be found in the appendix of [10].

Exercise 13. Modify the MATLAB code from section 3.4 to calculate concen-
trations using Ermak’s solution for the case Ky(x) �= Kz(x) that you derived in
Exercise 12. Compute the ground-level concentration using values of wset and wdep

in Table 3.1 and compare your results to those obtained with the standard plume
solution in Figure 3.4 on a rectangle of dimension [0, 100]× [−50, 50]. Compute the
absolute and relative difference between the two solutions at each point on the ground
(using a 100× 100 equally spaced grid) and comment on where the largest discrepan-
cies lie. Because the differences between the two solutions will be quite small owing to
the relatively small values of the physical parameters wset and wdep , we suggest you
repeat this calculation using values of wset and wdep 10 times larger and then observe
how the solutions differ. Finally, modify the code so as to calculate the amount (in g)
of zinc deposited at each of the receptors listed in the setparams.m file (with locations
given by recept.{x,y,z}) over a time period of 30 days.

4. Inverse Problem: Source Identification. We are now ready to tackle the
problem we originally set out to solve, namely, that of determining a contaminant
source emission rate for a given a set of measurements on the ground. This is particu-
larly important in certain practical pollutant dispersion scenarios where the emission
rate cannot be measured directly at the source, but rather only indirectly at a dis-
tance from the source (see [24], for example). In other applications, such as biological
contaminant releases [18, 43] or volcanic eruptions [41], the emission rate (or even
location) may be unknown by its very nature. Pollutant emission applications are
also typically complicated by a number of other factors such as

• multiple sources: in large industrial settings where many stacks are involved;
• multiple receptor measurements: at least as many as the number of sources.
Furthermore, increasing the number of receptors also increases the solution
accuracy by countering errors and uncertainties inherent in wind and depo-
sition data;

• time-varying wind velocities: since atmospheric conditions are never constant
outside of a laboratory setting.

In what follows, we will introduce these three complications one at a time.
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4.1. Single Source, Multiple Receptors. We begin by first writing an expression
for the vertical flux of contaminant at a given location �x = (x, y, z) due to a source

Q at location �X = (X,Y,H). The deposition flux [kg/m2 s] is simply the product of
the local concentration and the deposition velocity

wdep C(x
′, y′, z;Q,H) := wdep Qp(�x; �X,U).

Here, we have made use of the notation (x′, y′) = (x − X, y − Y ) introduced in
section 3.4 and have also introduced a new function p that makes explicit the linear
dependence of this expression on the emission rate Q.

Suppose now that measurements are made by accumulating the contaminant in
a sequence of Nr dustfall jars or receptors, located at positions �x = �ξr = (ξr, ηr, hr)
for r = 1, 2, . . . , Nr. Each receptor is a cylindrical container with an opening having
cross-sectional area A [m2], and the contaminant is sampled over a time period of
duration T [s], which is typically on the order of weeks in order that the receptors
collect measurable quantities of contaminant particles. Then the mass of contaminant
in [kg] deposited at the rth receptor can be written as

Dr = AT (flux) = wdepATQp(�ξr; �X,U).(4.1)

If we then consider the full set of Nr receptor measurements, this represents a system
of Nr linear equations in the single unknown emission rate Q. In particular, if Nr = 1,
then the problem has a unique solution for Q; otherwise (Nr > 1), the system is
overdetermined and there is no unique solution in general.

If we bear in mind that the Gaussian dispersion model is only an approximation of
the real world and that deposition measurements are subject to significant experimen-
tal errors, then it makes sense to search for a solution that minimizes some measure of
the error between experimental data and the plume model prediction. In particular,
minimizing an error measure corresponding to the root mean square of the difference
leads directly to the well-known method of linear least squares, which is the approach
we advocate here. In practice, some care must be taken to select both the number and
location of receptors in order to obtain an accurate approximation of the emission rate.

We now present a specific example of an emissions scenario at a zinc smelter in
Trail, British Columbia, Canada, which is a simplified version of the problem intro-
duced in section 3.4 and studied in detail in the paper [24]. We consider a single
source S1 and nine receptors R1–R9, where the locations of the source and receptors
are given explicitly in the MATLAB file setparams.m. The layout of sources and
receptors is also depicted in Figure 4.1. Assume that the wind is constant in time,
blowing at a constant speed of 5 m/s and directed along the positive x-axis. Take the
mass of zinc deposited in the nine receptors over a one-month period to be

�D = [8.4, 68, 33, 4.2, 11, 8.2, 2.9, 2.2, 0.93] mg.

Finally, assume the receptors are cylindrical glass jars of diameter 16 cm, so that the
mouth of each jar has area A ≈ 0.02 m2.

Based on the above description and the parameters in setparams.m, we employ
MATLAB’s lsqlin function to solve the corresponding linear least squares prob-
lem, which reduces to four linear equations for a single emission rate Q. Using the
MATLAB routine inverse1.m, we obtain the estimate Q ≈ 169 T/yr, which inciden-
tally is within an order of magnitude of the estimates of total zinc emissions computed
in [24] using a much more careful analysis. This is a surprisingly accurate result if one
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Fig. 4.1 Aerial photo of a zinc smelter site (Teck-Cominco Ltd. in Trail, BC, Canada) indicating
the location of each source Ss (circles) and receptor Rr (triangles). The size of the area
depicted is roughly 1600× 800 m.

takes into account the fact that the actual problem has four emissions sources (S1–S4)
at different locations and includes additional physical constraints on the variables, not
to mention the errors that are inherent in the Gaussian plume model.

Exercise 14. Substitute the estimate Q determined from the example above into
the Ermak solution (3.23) and determine the corresponding deposition values (in kg)
at each of the nine receptor locations. Compare your results with the measured data
and explain the discrepancy at the first four receptors, R1–R4. Redo the inverse and
forward calculations by omitting these four receptors, and discuss your results. Hint:
It may help to answer this question in combination with Exercise 15.

4.2. Multiple Sources and Receptors. We now generalize the problem from the
previous section by considering the situation where there are Nr receptor measure-
ments, but instead of a single source there are nowNs > 1 sources of contaminant with
emission rate Qs and location �Xs = (Xs, Ys, Hs) for s = 1, 2, . . . , Ns. The total mass
of contaminant deposited in the rth receptor is simply the sum of the contributions
from each source, so that

Dr = wdepAT

Ns∑
s=1

Qs p(�ξr; �Xs, U).(4.2)

To contrast with the previous section, (4.2) represents a system of Nr linear equations
in Ns unknowns that is solvable provided Nr � Ns—this is a practical restriction since
there are usually many more measurements than emission sources. We can rewrite
(4.2) more compactly in the form

�D = P �Q,(4.3)
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where �D and �Q are vectors (of length r and s, respectively) that contain the deposi-
tions and emission rates and P is an Nr ×Ns matrix with entries

Prs = wdepAT p(�ξr; �Xs, U).(4.4)

Exercise 15. Repeat Exercise 14 but this time include all four zinc sources S1–S4
in the least squares inversion process. Compare and contrast your results.

4.3. Time-Varying, Unidirectional Wind. We have so far taken the wind to
be constant over the time period of interest, but this is clearly not a reasonable
assumption in most real emissions scenarios where the wind speed and direction can
vary significantly throughout the day. Suppose therefore that the wind is allowed to
be time-dependent, but that only the speed U(t) varies while the direction remains
fixed; this type of behavior might correspond to a long, straight valley with relatively
level floor and steep sides that funnel the wind in a direction parallel to the valley
walls.

The total time T is then divided into Nt subintervals of length ∆t = T/Nt. Care
must be taken to choose a time interval ∆t that is short enough to capture the most
significant variations in wind speed and yet long enough that any emissions released
within that subinterval have time to reach a steady-state distribution (which inciden-
tally relates to one of the main assumptions in the Gaussian plume model). In many
atmospheric dispersion handbooks as well as studies in the literature, one encounters
the “rule of thumb” that a time interval of ∆t = 10 min is usually appropriate. For
the site pictured in Figure 4.1, and assuming an average sustained wind speed of
roughly 3–5 m/s, any contaminant plume released from one of the four sources will be
advected a distance of several kilometers downwind, which extends well outside the
domain of interest. Consequently, it is reasonable in this situation to assume that the
air flow is uniform and steady state within each time interval of duration ∆t.

If we orient the coordinate axes so that the x-axis is aligned with the prevailing
wind direction, then the total amount of zinc deposited at a receptor location �ξr may
be written as

Dr = wdepA∆t

Ns∑
s=1

Qs

Nt∑
n=1

p(�ξr; �Xs, U
n),(4.5)

where Un = U(n∆t).

4.4. Wind with Varying Time and Direction. When the direction of the wind
varies in time, the Ermak solution in (3.23) can only be applied if a new set of trans-
formed coordinates (x′s, y

′
s) is defined for each source s that not only translates the

source location to the origin, but also rotates the coordinates so that the transformed
x-axis is aligned parallel with the wind velocity. To this end, we generalize the coor-
dinate transformation from section 3.4 and define(

x′s
y′s

)
= R−θ

(
x−Xs

y − Ys

)
,(4.6)

where θ corresponds to the angle that the wind direction vector makes with the original
x-axis (measured counterclockwise) and R−θ is the 2× 2 matrix that rotates vectors
through an angle −θ in the x, y-plane (see Figure 4.2). The resulting coordinates have
an x′s-axis that is aligned with the wind direction.

We close this section by mentioning that the derivation of the Gaussian plume
solution used above is similar to that of Calder [3], who considered the problem of
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(X, Y)

x’

x

y

θ

y’
(x, y)

U

Fig. 4.2 Relationship between the original coordinates (x, y) and transformed coordinates (x′, y′) for
a point source at location (X, Y ), in a wind having speed U and direction angle θ.

multiple-source estimation in a time-varying wind with a rotated coordinate system
aligned with the wind direction. The main difference between Calder’s work and ours
is that he provided a general theoretical framework for the source estimation problem
that avoided providing any specific Gaussian plume approximation for the advection–
diffusion equation. Finally, we point out the work of Hogan et al. [17], who estimated
both location and emission rate for a single source using exactly four concentration
measurements and showed that the solution could be found exactly given synthetic
data (that is, data computed directly from the forward solution with no noise). Of
course, real data always contain a significant degree of error, which is why we are
advocating an approach such as the least squares method outlined here.

Exercise 16. Generalize your MATLAB code from Example 15 to handle a wind
velocity whose direction and magnitude vary with time. You should make use of
the wind measurements in the file wind.mat that can be read in using the command
“ read wind,” after which you will have access to a structure variable called wind

containing the following members:

wind.time – time of wind measurement (s),
wind.vel – wind speed (m/s),
wind.dir – wind direction (radians ccw from north).

Each structure member is a vector of length 4320 whose entries correspond to wind
data measured at 10-minute intervals over a 30-day period.

5. Conclusions. In this paper, we provide a detailed look at the basic mathemat-
ics behind atmospheric dispersion modeling, based on Gaussian plume approximations
to the advection-diffusion equation with a continuous point source. Using techniques
from Green’s functions and Laplace transforms, we derive various plume solutions
based on a number of physically-relevant simplifying assumptions. The results are
illustrated using examples from atmospheric contaminant transport in realistic emis-
sion scenarios with real data. We also discuss the inverse source estimation problem,
in which multiple source emission rates are estimated from a number of ground-level
contaminant measurements. This last problem is a nice application of the method of
least squares to the solution of overdetermined linear systems. A number of exercises
provide many opportunities for students to investigate the problem in more detail,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATHEMATICS OF ATMOSPHERIC DISPERSION MODELING 371

and suggestions are provided throughout on extensions that permit educators to ex-
plore the material further in undergraduate classes on mathematical modeling, PDEs,
or numerical analysis.
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