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1 Introduction

It is often said that ours is the century of biology, but that may yet be reconsid-
ered and the century end up being declared that of climate. The challenges due
to climate change facing us are enormous and we will almost certainly have to
harness all of our scienti�c knowledge, technological expertise and accumulated
experience to respond. The question I wish to address here is what role we,
in the mathematics community, should play in this endeavour, in particular in
facilitating an understanding of our climate and e¤ecting reliable predictions.
That mathematics has a crucial role to play is undisputed. We have only one
Earth and thus direct experimentation to test hypotheses is impossible. The
only option open to us is the creation of mathematical replicas of the Earth, now
called Earth System Models, and run experiments as computational simulations
with these models.
It does not take much more than a �back-of-the-envelope�calculation, based

on energy balance considerations, to see that the Earth is warming due to the
accumulation in the atmosphere of greenhouse gases (GHG). Moreover, it cannot
be argued that the increase of GHG is due to anything other than our burning
of fossil fuels. For a comprehensive, well articulated and easily readable case I
suggest Archer�s book [3] or that of Archer and Rahmstorf [4] .
Given such calculations, a natural question is why we should continue to

attempt much more complex calculations and predictions as are undertaken by
the Intergovernmental Panel on Climate Change (IPCC) through its member
climate centres, see [27]. Indeed, in terms of the global temperature average the
IPCC does not improve much on these simple energy balance calculations. The
main reason for going much beyond the basic energy balance is that the global
temperature increase will not be uniformly distributed over the Earth. Due to
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polar ampli�cation, which is the tendency for the circulation in the ocean and
atmosphere to carry heat away from the tropics, temperature increases in the
polar regions will far exceed those near the Equator. Predictions of the climate
models are that temperature increases in the Arctic may be closer to 15�20oK
than the predicted 2�4oK in the mid-latitudes, see [27]. Since the polar regions
are where most of the the land ice is located, the consequences for sea-level rise
are dramatic. This is only the most prominent example of a vast array of
regional variations in climate change impacts. Thus, one of the main aims of
climate model simulations is to sort out these regional di¤erences, understand
their underlying physical causes and make e¤ective and reliable predictions of
them.
The use of mathematical models of the Earth puts the discipline of math-

ematics squarely in the frame as this very process raises a multitude of math-
ematical questions. It is, in many ways, surprising that mathematicians have
not been more involved but I am convinced that this will change over the next
decade. Since the climate is presenting us a challenge of such magnitude, soci-
etal forces will inevitably bring about a mobilization of the scienti�c community,
including mathematics, to meet that challenge.
We do not, of course, have only models to o¤er us insight into the workings

of the climate. There are also data: lots of data. There are data in abundance
from the recent past that give a comprehensive picture of some key aspects of
the current climate, for instance surface temperature. There are data from the
past century or so and proxy data obtained from paleoclimate records.
There is a disciplinary split between the responsibility for the organization,

analysis and inference from models, on the one hand, and data on the other. The
former task falls on the shoulders of applied mathematicians, while the latter on
statisticians. Models and data are, however, becoming less easy to distinguish
from each other. Models themselves are resulting in massive databases which
require organization and analysis. At the same time, data are often partially
derived from models in subtle ways. For example, the relating of proxy data to
the desired variable, such as temperature, essentially constitutes a model of the
relevant process. Models are also used to enhance data, such as for capturing
the dependence of precipitation �elds on topography. A neat distinction, and
disciplinary separation, between the analysis of data and that of models is thus
becoming less viable.
My interest in this subject was �rstly motivated by a commitment to direct

my own work toward climate science. As a mathematician, I am also interested
in how our subject will grow in response to climate issues. The emergence of
mathematical biology over the past few decades has changed applied mathemat-
ics in untold ways and taken us in many new directions. It has done so because
biological problems demand a di¤erent way of mathematical thinking. A critical
question for us, the mathematical community, is then: how will climate research
shape the work we do? Or, how will the climate change mathematics?
My contention in this essay is that the greatest challenges, as well as the

greatest promise for novel and innovative mathematical thinking is at this in-
terface between data and models. I hope to explain why I have come to this
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conclusion and what mathematical issues I see arising.

2 Climate Models and Prediction

The �rst step is to see exactly what constitutes climate science at present. I
�gured that the only sensible way to do this was to visit a major climate centre
and talk with climate scientists. So, I packed my bags and went to the National
Center for Atmospheric Research (NCAR) in Boulder, Colorado. This worked
out well as I had signed up to organise a Theme-of-the-Year at the Institute for
Mathematics in Geosciences (IMAGe) at NCAR and I could channel my zeal
into organising workshops. Before explaining what I learned from talking with
NCAR scientists, it is worth giving a brief description of what constitutes a
climate model.
A climate model is a collection of component models and a coupler that

moderates information �ow between them. The components are each models in
their own right of a key part of the climate. They are usually divided up into the:
atmosphere, hydrosphere (ocean etc.), cryosphere (land and sea ice), geosphere
(land) and biosphere (vegetation, biota etc.). The in�ow of radiative energy
(short wavelength) from the Sun, the emission of radiation from the Earth (at
longer wavelengths) and the interaction of the latter with GHGs is the driver in
any climate model. The atmosphere then moves heat around through a variety
of processes. At a global scale, the climate model redistributes heat from the
equator to the poles.
The earliest models were essentially atmospheric models coupled with the

energy balance equations. In these early models, the ocean is represented as
a slab and only enters as a heat source, or sink, for the atmosphere. But the
ocean itself plays a critical role, albeit on a much longer time scale than the
atmosphere, in moving heat energy around the planet. Including a serious ocean
model as part of the full climate models has been one of the great achievements
of the past decade. Next comes the ice. Its importance in the energy balance
is evident as its albedo (propensity for direct re�ection of short wavelength
solar energy) is quite large. But it also has dynamic importance through its
interaction with both the ocean and the atmosphere. Then there is also the
land, vegetation and role of biological populations. These pieces are only now
beginning to be included in climate models.
The motion of the atmosphere and ocean therefore lie at the heart of a

climate model. These are governed by the primitive equations of geophysical
�uid dynamics for the velocities of a �uid particle at point (x; y; z) at time t,
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which are based on conservation laws, the �rst of which is that of momentum:

du

dt
+ fv = �1

�

@P

@x
+ F x;

dv

dt
� fu = �1

�

@P

@y
+ F y; (1)

0 = �g � 1

�

@P

@z
+ F z;

where d
dt is a full advective derivative (and hence nonlinear). The Coriolis term

is f = 2 j
j sin�, where j
j is the rotational speed of the Earth and ' is the
latitudinal angle. The velocities are u = dx

dt and v =
dy
dt , P =pressure and � =

density. It is assumed that horizontal motion dominates vertical motion and thus
the �uid is in hydrostatic balance. As a result, the z-equation (third equation
above) has reduced to a simple relationship between pressure and density. Note
that these equations are given in a Cartesian frame, and thus have to be modi�ed
near the poles.
The terms F x; F y and F z are friction forces on the �uid and will be dis-

cussed more below. These equations are then complemented by those expressing
conservation of mass and energy. The conservation of mass entails:

@�

@t
+r � �U = 0; (2)

where U = (u; v; w). For the ocean, which is incompressible, this can be simpli-
�ed to

@�

@t
+r� � U = 0: (3)

The equation for conservation of energy is all-important for climate as it gov-
erns the evolution and transport of heat energy. In the following, T represents
potential temperature:

@T

@t
+r � TU = FQ; (4)

where FQ includes thermal di¤usivity (although this may be quite small) and
all the radiative forcings, which are e¤ective forcings due to the changes in the
way the atmosphere re�ects long wavelength radiation given o¤ by the Earth.
Greenhouse gas build up is manifest as a radiative forcing. The set of equations
is completed by an equation of state of the form:

� = �(P; T; S; :::); (5)

which for the atmosphere is the Ideal Gas Law: P = � expRT , and for the
ocean usually taken as a linear relationship between �; T and S. The ocean S
is salinity, while in the atmosphere it is speci�c humidity and hence measures
water vapour content. There will also be a conservation equation for S

@S

@t
+r � SU = FS : (6)
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We now have a complete set of equations, at least in outline form; for
more details, see [11], [22], and [20], . Note that all of the forcing terms
F = (F x; F y; F z; FQ; FS) have been left (deliberately) vague. Crafting them is
the focus of much of the activity of the climate scientist; more on this later.
Our set of GFD equations are solved numerically on a grid. A typical grid

size that is practical for climate runs, which have to be run for long periods
of time (decades to centuries), is 100km � 100km. This seems like a very
coarse resolution that risks missing many phenomena; that is right and they
must be compensated as will be discussed in the next paragraph. Even with
this resolution, a 100 year simulation might take several weeks to complete on
a present day supercomputer. Of course, there is considerable work in �tting
the whole computational grid together and setting the appropriate boundary
conditions. The GFD equations themselves and the computational code to
solve them is known as the dynamical core of the climate model.
The issue of dealing with e¤ects that occur at scales below the grid is of

great current interest. It is widely believed that the greatest weakness of climate
models is their not resolving sub grid-scale e¤ects. Since the grid boxes have
sides of length around 100km, this includes an enormous range of activity critical
to weather and climate, including the behavior of clouds and convection, which
is particularly important in the tropics. The strategy used now is to parametrise
the sub grid-scale e¤ects and reproduce them through introducing or modifying
terms in the equations. In other words, parameters are set in the equations of
motion which hopefully capture their impact on the model. An example is the
parametrisation of small-scale eddies. This is most easily visualised in the ocean
where we know there are all kinds of small scale turbulent eddies. This may
occur on scales from meters, or even smaller, up to kilometers. All of this is
well below the grid scale. A standard approach is to introduce a viscosity term,
called an eddy viscosity, as the main impact on the larger scales is accepted to
be di¤usive.
Running a numerical experiment now involves setting the model to re�ect

speci�c conditions. These conditions will in turn re�ect a speci�c period in
history or one anticipated for the future. For instance, of interest might be
the pre-industrial period. In this case, the radiative forcing is set to re�ect
pre-industrial CO2 emissions. Similarly, for anticipating the impact of future
emission scenarios, the model is run with appropriate forcings, see [7].
There are many other speci�cations needed in the model. This is manifest

as setting the values of parameters that appear not only in the main GCM, but
also the other components of the full Earth system model, such as of land, ice,
vegetation and biology. Some of these may be known a priori and thus pre-set,
but others may not be so obvious and need setting through running the model
and then �tuning�the parameters and nudge the model to �t the observed or
known conditions.
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3 Data Assimilation (DA)

Climate investigations are thus based on the use of models and data. Obser-
vations inform the models through parametrisations, setting of parameters and
decisions about which processes to include. The subject that systematically
matches information from data and models is data assimilation. Data assim-
ilation was the starting point of my interest in climate. I have been working
on assimilating Lagrangian data into ocean models for about eight years (see
below for a discussion). So, I started my time of visiting NCAR with the idea
that data assimilation must be central to climate science. As I discuss below,
the situation is not quite as I expected. But �rst I think it will be helpful if I
explain exactly what data assimilation is and how it works. It is a subject with
a strong mathematical dimension and a commensurate need for the intervention
of mathematicians in order to meet its challenges.
Assimilating data into models has the aim of achieving optimal use of both

models and data. In principle, it o¤ers the most comprehensive and accurate
picture of the system state given the available information from model runs and
observational data. Given the importance of models and the plenitude of data
in the climate, it would seem to be an obvious candidate for an application of
the techniques and ideas of data assimilation.
The formalism of DA is best described in terms of a (large) vector � 2 Rn.

The model is then a rule for advancing the state of the system in time

�k =M(�k�1; tk�1): (7)

An example would be the 2dimensional (barotropic) GFD equations on a square
grid which divides a rectangular domain into 100� 100 boxes, then

� = (u11; v11; �11; P11; T11; S11; u12; v12; : : : ; u21; v21; : : : ; Tnn; Snn)

which has length 6 � 104. The model would then be computational solution
to the equations which advances the system from time tk�1 to time tk, where
�k = �(tk).
The observations may be of a subset of the components of �, or complicated

combinations of them, and is expressed in terms of an observation operator

� = H(�) (8)

where � 2 Rm. In general, m will be much smaller than n. If we, say, observe
temperature at certain grid points, H is then a simple projection operator onto
those coordinates. Since there is no reason that measuring devices should lie
at computational grid points, H would usually be a more complicated linear
operator that involves an interpolation. It is not hard to conjure up a situation
in which H is nonlinear if variables measured are not a subset of the state
variables, for instance as occurs with proxy data.
At this point, DA diverges into the so-called sequential and variational ap-

proaches. In the sequential approach, each time step is treated independently
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and an update is formed using the model prediction at that time and any avail-
able observational data, again at that time. The formula for the update, often
called the analysis and denoted by �a is

�ak = �
f
k +K

�
�k �H(�fk )

�
(9)

where �fk is the model prediction (forecast) at time tk. This is then a natural
linear interpolation where the n�m matrix K, called the (Kalman) gain matrix,
is to be determined. The sequential method is applied iteratively and so

�fk+1 =M(�
a
k ; tk):

The key point is to determine K and, for that, we need to specify our
respective con�dence in the model and observations. This will be encoded in
error covariance matrices: Bk an n� n matrix for the model and Rk an m�m
matrix for the observations. The matrix K is then derived by requiring that �ak
minimises the cost function

J(�) =
D
� � �fk ; B

�1
k (� � �fk )

E
+


�k �H(�); R�1k (�k �H(�))

�
: (10)

A calculation then shows that

K = BkH
T
�
Rk +HBkH

T
��1

(11)

where I have assumed that the observation operatorH is linear. For an overview,
see [17]
It is usually supposed that R is given as it accounts for human and in-

strument error, but that the error covariance matrix B for the model might
be determined by the model itself. the simplest case of B being given (inde-
pendently of k) is called Optimal Interpolation. Kalman �ltering, in contrast,
evolves the error covariance matrix with the model. The model in this case
needs to be linear. If nonlinear, then it must be linearised (this is the Extended
Kalman Filter). The now-popular Ensemble Kalman Filter gives a construction
of Bk from (nonlinearly) evolving an ensemble under the model, see [9].
The variational approach takes all of the observational data over a certain

time period t = t1; : : : tN and seeks an optimal state estimate of the initial con-
dition �0 as in inverse problem. In so-called 4DVAR, it is found as a minimiser
of the cost function

J(�) =


� � ��0 ; B�1(� � ��0)

�
+

NX
1



�k �H(�); R�1k (�k �H(�))

�
; (12)

where ��0 is an initial estimate and B the error covariance associated with that
estimate. In principle, this cost function is nonlinear because of the observation
operator, but is often linearised in order to make the problem tractable. This
minimisation is then usually done directly with some appropriate computational
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method. This requires extensive software engineering and computation to ap-
proximate the minimum of the cost function. For recent reviews, see [15], and
[16].
The sequential method might be preferable for short time scale problems

where updates are needed regularly. On the other hand, if a reanalysis is being
done to gain a better state estimate retrospectively, then an inverse variational
approach is more natural. Having said this, the situation in practice is more
confused as most weather centres use a variational approach but applied in a
sequential manner!

4 Bayesian DA

The underlying philosophy of the above approach to data assimilation is that
an optimal estimate of the state is being sought. But what if there are mul-
tiple minima of the cost function? Do we want just the global minimiser? A
probabilist or statistician would look at this situation and say that what we
have is really a probability distribution function (PDF) and we are restricting
our attention to the mode. The point is that there may be critical information
thrown away and the mode may be deceptive in its succinctness.
A Bayesian approach o¤ers a very natural way to formulate DA so that

the entire PDF is captured. If we apply it sequentially at each time step, the
forecast is replaced by a PDF, the prior; the observation by its likelihood, which
is a conditional PDF, and the analysis by the posterior PDF. This latter PDF
is found by Bayes�Theorem which states that:

Posterior / Likelihood � Prior,

or, in the notation of Section 3:

P (�j�) / P (�j�)P (�): ()

An important point is that it is not just the estimates and data-sets (�fk and
�k respectively) that are replaced by these PDFs, but also their error covari-
ances. Indeed, the fact that the errors were represented by covariance matrices
meant that we had e¤ectively restricted ourselves to Gaussian PDFs. Bayes
Theorem allows these PDFs to be general. If a variational approach is being
used then Bayes Theorem is applied once with the prior representing the initial
estimate and the likelihood PDF representing the observational error.
There is a direct relationship between this set of PDFs and the cost functions

already discussed, see [21], and [1].The posterior PDF, which corresponds to the
analysis state is given by:

P (�j�) / exp (�J(�))

where J is the cost function associated with the scheme under use.
The Bayesian approach gives a fundamental reframing of the DA problem.

It is no longer aimed at getting the �best� estimate but at organising, proba-
bilistically, all of the information coming from the di¤erent sources, i.e., data
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and models. The result is the assignment of a probability distribution to the
state space which re�ects the uncertainty of the state in light of the data.

5 Climate and DA

It would seem to be the proverbial �no-brainer�that DA would be used exten-
sively in climate: the subject revolves around large computational models and
there are lots of data. It is, however, hardly used at all and the argument for
this goes something like the following. Climate research is about prediction,
the variational method may help to give us a good idea of the past climate but
we are interested much more in the future! Moreover, it is not prediction over
short time scales like weather where yesterday�s data can be used in a sequential
approach to get a better prediction for tomorrow. For climate, it is prediction
far into the future that is demanded.
Je¤ Anderson is the leader of data assimilation research at NCAR, see

http://www.image.ucar.edu/sta¤/jla/.

He has developed and led an initiative in bringing the Ensemble Kalman Filter to
climate and weather problems, see [21] That his e¤orts have met with success
I learnt during the lecture of Marta Vertenstein, who won the 2010 CESM
Distinguished Achievement Award at the Community Model meeting, see

http://www.cesm.ucar.edu/news/awards/vertenstein.html.

In describing the challenges to the software infrastructure underlying the com-
munity model, she cited the incorporation of data assimilation as one of the
main four!
As part of the NCAR Theme-of-the-Year, Je¤ Anderson and I organised a

workshop on DA and climate. Our goals were to (1) De�ne the speci�c DA
problems that arise in considering climate questions; (2) Assess the ways in
which DA is being used e¤ectively right now; and (3) Determine the speci�c
DA challenges that arise in climate. See

http://www.image.ucar.edu/Workshops/TOY2010/focus02/Agenda.shtml.

It was evident during our organisation of the meeting and the meeting itself
that there are two areas where DA is already having an impact: paleoclimate
and ocean. In both of these, DA is beginning to be used in signi�cant ways and
is fast gaining acceptance. I will describe a case study of each to give an idea
of some of the gains from using DA and some of the issues that arise.

5.1 Paleoclimate

The period between 1790 and 1820 was cold in Western Europe. Known as
the Dalton Minimum, it is believed to have been part of the global cooling due
to decreased solar activity and volcanic eruptions. But Western Europe was
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colder than it should have been and Bjerkenes [6] hypothesised that a secondary
e¤ect was driving this regional variation. The Bjerknes hypothesis is that an
anomalous ocean-atmosphere interaction caused polar water to move south,
during winter, in the eastern North Atlantic. This then lowered sea surface
temperatures (SST) around Western Europe which, in turn, kept the region
cool even into the summer months.
Van der Schrier and Barkmeijer [30] quantitatively corroborated Bjerkenes�

hypothesis through a wonderfully innovative use of data assimilation. They
assimilated sea-level pressure data (SLP) averaged over the period into the
ECBilt-Clio intermediate complexity model (these are models based on GFD
computations but at much coarser resolution than current GCMs). This model
includes both active ocean and atmosphere components. The atmospheric part
(ECBilt) is a quasigeostrophic (QG) model in which the ageostrophic e¤ects
are accounted for through added forcing. They then assess the southerly polar
water �ow in the NE Atlantic and the resulting SST around Western Europe.
The anomalous atmospheric circulation is characterised by a minimum over

Labrador and a maximum over Iceland of the QG streamfunction. After the
data assimilation, these are both well reproduced, see Figure 4 in [30]. Bjerknes
gives an argument that explains the origin of the cold water �ow into the region
around Western Europe. His argument is based on the Sverdrup Principle and
the response of the ocean to the anomalous wind-stress curl.
The question posed by van der Schrier and Barkmeijer [30] was whether a

free-running model that assimilated data re�ecting the anomalous atmospheric
circulation would reproduce this e¤ect. The answer they give is strikingly a¢ r-
mative. Moreover, they resolve another key issue: whether there is any weaken-
ing of the Meriodional Overturning Circulation (MOC) involved in this scenario.
The weakening or even collapse of the MOC is often cited as the usual suspect in
a cooling of Western Europe. They showed that the MOC is slightly weakened,
but it is not statistically signi�cant.
There are some important points to note here: (1) there is no change as-

sumed in the radiative forcing, and (2) without DA of the SLP data, the cold
water �ow does not occur. Their work makes clear the relationship between the
SLP anomaly and the cooling of Western Europe but leaves open whether this
is a secondary e¤ect brought about a change in radiative forcing. One could
imagine another experiment in which data related to changes in radiative forc-
ing, due to solar activity and volcanic dust uploading, are assimilated into the
model. Whether the anomalous atmospheric circulation is created could then
be checked!
In summary, the point is that their work shows the close relationship be-

tween the anomalous atmospheric circulation and the southerly polar water
�ow, exactly as Bjerknes hypothesised. It is important that the experiment is
based on a free-running model and so there is no constraint on the atmospheric
variability.
Van der Schrier and Barkmeijer use a dedicated assimilation scheme that

does not �t neatly into what I have outlined here. This method is based on an
application of forced singular vectors, a method due to Barkmeijer et al. [5]
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This is a striking application of DA in that it shows how DA can uncover
physical e¤ects and relations. Overall, however, there are many issues that
arise in DA for paleoclimate, see [33] for some recent developments. The data is
sparse, temporally averaged and often has a low signal to noise ratio. Moreover,
the timescales in paleoclimate can be long. All of these features pose a challenge
to DA.

5.2 Ocean

The next IPCC report, entitled AR5 for Assessment Report 5 and due out in
2013-4, will adopt a new focus on decadal predictions. This is a de�nite change
in perspective from the (close to) centennial scale predictions that were targeted
in previous IPCC reports. This shift re�ects an important change in perspective.
Previously, the goal of the IPCC was to promote an understanding about climate
change in order to motivate society to act on curbing greenhouse gas emissions.
The scienti�c community, almost unanimously, considers that case closed and
the approach is now to lend support to decision makers who must react to
the inevitable changes we face over the coming decades. Indeed, based on the
current levels of CO2 in the atmosphere, we are already committed to some
warming regardless of future actions. The idea is thus to make predictions that
will serve to support and inform those decisions, and the information needed is
therefore over a decadal timescale.
It is also widely accepted that the accuracy of decadal predictions hinges on

our knowledge of the state of the ocean. Recognizing that getting the ocean
right is critical for decadal predictions has led to a renewed interest in ocean
data assimilation. While DA has seen its development advance most rapidly in
the context of the atmosphere, sustained research e¤orts on ocean DA have also
borne fruit. For instance, the ECCO project at MIT, see

http://www.ecco-group.org/,

has led to a new understanding of deep water currents.
The ocean is set apart from the atmosphere for various reasons, for instance

it operates on a much longer time scale. Some of the currents that form part
of the so-called �ocean conveyor belt� complete their movement of water in
centuries, see [34]. Most importantly, the ocean is much harder to observe.
Surface properties, for instance sea surface height and temperature, can be
obtained from satellite observations, but sub-surface properties and motion are
much harder to ascertain. This makes the data that are available and the
methods for their assimilation especially important. The measurements coming
from instruments that gather subsurface data will thus be important in gaining
the most accurate approximation to the state of the ocean as possible for an
initialisation of the models.
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5.3 Lagrangian DA

Dedicated techniques for the assimilation of Lagrangian data into ocean models
have been developed recently. These have served to show how optimal use can
be made of Lagrangian data in both updating and (re-)analysing ocean models.
The challenge posed by Lagrangian data is that it is not presented in the form
of state variable information. If we take a velocity �eld in two-dimensions, for
instance a solution to the barotropic version (which just means independent of
z) of (1):

U = (u(x; y; t); v(x; y; t));

then Lagrangian data will come from observations of a trajectory of the dynam-
ical system describing �uid particle motion, i.e.,

_x = u(x; y; t);

_y = v(x; y; t):

So, given (noisy) observations of (x(t); y(t)) at, say, times t1; t2;:::; tk, we would
endeavour to reconstruct the velocity �eld (u; v).
This looks like a hopeless task as the velocity �elds are functions and the only

general information we have about them is that they satisfy the (barotropic)
GFD equations. But we should not lose faith as ocean velocity �elds are usually
dominated by coherent structures. These include currents, the Gulf Stream
being one example, and eddies, such as occur in the Gulf of Mexico which can
be of the order of 100km across. If the Lagrangian data we obtain nails these
structures down, there is reason to believe that we might recover the �ow �elds
from a small number of trajectories. This was the philosophy underlying the
papers [19], [24], and [?], and all the simulation experiments have provided
evidence that this reasoning is sound.
The most striking success came in the largest model. In [32], we showed even

a very small number of trajectories could capture eddies in the Gulf of Mexico.
The identical twin experiment (which means two models are run in tandem: one
as �truth� or �control� and the other representing our model approximation)
involved running a control with a detaching eddy that drifted to the western
gulf and a model that was initialised without the eddy. Assimilating even one
trajectory that stayed with the eddy led to a �ow in which the eddy was evident,
see [32].
The importance of this type of Lagrangian data assimilation was underscored

in [26] in which it was shown that combining it with a targeted deployment strat-
egy of Lagrangian instruments is particularly fruitful. But the technique is not
without its challenges. Breakdown of standard �lters, such as the (Extended)
Kalman Filter, was shown in [19] to occur when a trajectory passes near a saddle
stagnation point of the �ow �eld. We have dubbed this the �saddle e¤ect�and
I will discuss some of its implications below. From the mathematical viewpoint,
the interesting aspect of Lagrangian DA is the interplay between the DA and
the underlying dynamics of the �uid �ow.
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5.4 A new generation of measuring devices

An article in the Guardian on 3 December, 2009 [29] described a �new weapon
against climate change..�The �weapon�is new and impressive: it is a sea-glider
that propels itself through buoyancy changes with wings that convert vertical
motion to horizontal, and its battery, which powers it for forays that can last over
several months and a few thousand kilometres, is on a rail and its movement
can tilt the glider in order to change direction. But it is an instrument for
taking measurements in the ocean not, as perhaps suggested by the headline,
for intervening in climate processes.
Glider DA is an area that is unexplored. Of course, the data can be treated

as Eulerian (in situ) data at each point it is obtained, but there is reason to
believe that the (quasi-)Lagrangian nature of glider data may be signi�cant. I
call it quasi-Lagrangian because the glider, in part, uses the underlying �uid
�ow to move and therefore its position contains information about that �ow.
Gliders can be seen then as the modern version of Lagrangian instruments

that have been used for some time to gather ocean measurements and have given
us considerable insight into ocean phenomena. Among these are �oats, which
sit at certain depths and move with the �ow, and drifters which move on the
surface while being drogued by a sail of some kind that sits below the turbulent
Ekman layer. The former collect information about their position through sonar
and triangulation using sound sources that are placed semi-permanently on the
ocean �oor. They upload this information by surfacing and communicating with
a satellite. The latter can be followed by GPS.
The most recent, and arguably most important, version of these instruments

are the ARGO �oats. These �oats do not use sonar but surface every ten days
or so and give pro�les of various physical properties (temperature, salinity etc.)
from the passage between surfacings. Great international cooperation has led
to signi�cant coverage of the World�s oceans with ARGO �oats.
Making full use of these rapidly accumulating data in models is an open

challenge. Data assimilation schemes are needed which will be tailored to the
speci�c nature of data obtained from Lagrangian instruments.

6 Calibration and Tuning

Towards the end of my time visiting NCAR , I was able to attend the annual
Community Model meeting in Breckenridge, Colorado, see

http://www.cesm.ucar.edu/events/ws.2010/Agendas/agenda.pdf.

This meeting �lled in many of the gaps for me and gave me a much deeper and
broader understanding of climate models. My understanding was then deepened
by the fortunate opportunity I had of interactinmg with a number of climate
scientists at the Newrton Institute during the Climate Prediction programme,
see

http://www.newton.ac.uk/programmes/CLP/.
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I have suggested that the interface between data and models is a fertile and
important area. Its importance derives from an aspect of climate modeling that
is key to the �nal climate model product but is carried on largely behind the
scenes. This is the process of calibration and tuning of a model.
It is natural to think of a climate model as a living entity. Models are con-

stantly being updated: as computers improve their processing speed, resolution
can be reduced, and more processes, relating to ice, land, biology etc., can be
included. The role of the IPCC, however, makes the reality slightly di¤erent.
Every seven years or so, the climate centres will suspend model development
and submit the current version for the next assessment report. That date is not
mandated by the IPCC, but rather the necessity of published results based on
the model appearing by a certain date to be counted in the next IPCC report
makes such a cut-o¤ inevitable. Thus, when the NCAR Model, or the Hadley
Centre Model is referred to, it will usually be the latest version being used for
IPCC runs and so will stay �xed for a period of a few years. This punctuation
of the modeling process means that models under discussion often do not re-
�ect the very latest developments, but it does help to mitigate the potential for
ambiguity and misunderstanding.
The NCAR models that will be used for the IPCC AR5 runs are CCSM4 and

CESM1, which were publicly released in 2010. The development of such a code is
a mammoth e¤ort involving hundreds of climate scientists, software engineers
and computational scientists. A key aspect is the software engineering that
facilitates the most e¢ cient interactions between its di¤erent components. This
received considerable update in CCSM4 and, as a result, its overall structure is
quite di¤erent from CCSM3. As discussed above, the computational code for
the (�uid) dynamical parts of the model form what is called the dynamical core.
There are analogous basic model cores for each of the other processes included
and a coupler that orchestrates the interactions between the model components.
In addition there are parametrisations of unresolved processes. Each of these
pieces has been developed, tested and set in the CCSM4. Any changes would
now only be incorporated in a next-generation model.
The �model� should be viewed then as a �xed replica of our Earth upon

which can be performed (computational) experiments. The di¤erent experi-
ments require some �exibility as they will be aimed at di¤erent historical con-
ditions. This �exibility will be through the external forcing to which the model
is subjected. It will be run under di¤erent forcing scenarios that correspond
to either di¤erent historical periods or conjectured future scenarios. This ex-
ternal forcing will include the solar insolation (although this has not varied to
any great degree over the past few centuries) and the all-important radiative
forcing, which encodes all the e¤ects of changes in GHG emissions. These are
the resettings of the model that will vary from one experiment to another.
There are also many settings of the model made during its formation and

which make up part of the �nal �model�which is used for these experiments.
Anyone who has worked with a complex model knows that it takes considerable
time and care to get it working �right�. Initial runs will almost always lead to
something unexpected. There is usually some debugging of the code, but even
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after that there will be considerable necessary tuning of the model. This sounds
like a potentially corrupt process. After all, what is the di¤erence between
tuning a model to get the answer you want and tuning it to get the �right�
answer? The craft of the scientist is to know the di¤erence; but it is a �ne line
which is one reason for multiple checks.
There are the unresolved processes related to the intrinsic physics of the

models which will need �setting�. For instance: eddy di¤usivity (discussed
above) or gravity wave drag parameters need to be calibrated and determined.
The best way to set such parameters would be to go out and directly measure
them, but this may not be possible. Their determination would then be achieved
through a trial and error process This is the process of calibration and tuning
of the section title.
The procedure for calibration and tuning in climate models relies heavily on

the expert judgment of climate scientists. Runs will be carried out and output
collected and visualised. For instance, a model will be run under �twentieth
century� conditions. The results will then be evaluated against standard ob-
servational data sets and key qualitative features of the climate system. Each
domain scientist will have their favorite signature e¤ect they are looking for.
An oceanographer might look for whether the model gets key features of the
major currents correctly: perhaps checking that the separation point of the Gulf
Stream from the North American East Coast is somewhere around Cape Hat-
teras. An ice scientist might look for the thickness of the winter Arctic ice sheet.
The judgement made by the climate scientist is based on an understanding of
what value or con�guration their key signature should have. This understand-
ing comes from accumulated experience with the phenomenon and is ultimately
based on observations of that quantity or feature. For instance, as more data
on ice sheet thickness comes in, we can make better judgements about whether
the GCMs are capturing it well.
After this process of calibration, the model will then be tuned to improve

its reproduction of the quantity or e¤ect that has been the subject of calibra-
tion. There are many parameters that are subject to tuning; some of these will
have emerged during the process of parametrisation of unresolved processes and
therefore are not directly measurable physical quantities. Of course, tweaking
parameters to achieve agreement on one signature may have a knock-on e¤ect
on other quantities and cause them to become �out of tune�. The whole process
is then a massive balancing act and it constitutes a lot of the scienti�c skill and
understanding that goes into a model. Much insight into this process in the
context of CCSM3 can be gleaned from reading the papers in the dedicated
issue of the Journal of Climate, see [10]. See also [14] for a di¤erent perspective
on model tuning. Statisticians have laid out a perspective for calibration, see
[18], and [12].
The end-product that is the model includes the result of all this calibration

and tuning. This process should be carefully distinguished from the modi�cation
of forcings, such as radiative forcing due to GHG build-up that will be modulated
to capture di¤erent scenarios of future emissions or to capture di¤erent time
periods. It is helpful to think of the model, such as the CCSM4 of NCAR or
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HadCM3 of the Hadley Centre as an immutable entity which encodes all of
our best current understanding of the Earth system. Each is a mathematical
replica of the Earth that can be used for experimentation: to test hypotheses
and develop understanding of the workings of the Earth under di¤erent forcing
scenarios. Their importance derives from the fact that we cannot run such
experiments on the actual Earth and so need a substitute.
There are innumerable science questions that drive climate science and these

computational models o¤er us a �laboratory�for addressing them. To mention
two: it is known that the poles will warm at a much faster rate than the tropics,
as mentioned earlier, but we do not know the extent of this polar ampli�cation
nor what all the mechanisms are that drive it. The models include all the known
drivers: Hadley cells in the atmosphere, meridional overturning circulation in
the ocean, and yet they appear to underestimate it. So, what else is at work?
The Mauna-Loa data set for CO2 (see [3]) in the atmosphere is the benchmark
for amounts of atmospheric CO2, but we know that if all the CO2 coming
from fossil fuel emissions accumulated in the atmosphere, the Mauna-Loa record
should be even larger. So what happens to the rest of the carbon? Fears are
that it is accumulating in the ocean, but this is not conclusively known.

7 Prediction and Uncertainty

Although the climate science community sees models as experimental tools for
answering science questions, those outside see their main purpose as being for
prediction. The public face of climate science is, in other words, made up
of the predictions and projections (a term used by the IPCC for predictions
under di¤erent emission scenarios) made using these models. As we know,
there are forces lined up to discredit these predictions in part on the basis of
the uncertainty that climate modelers openly attach to their predictions. This
politically fraught atmosphere has made it di¢ cult for a properly informed
discussion on uncertainty to take place.
If stakeholders are to use model predictions as a basis for decision-making it

is very important that we develop the clearest and most comprehensive picture of
uncertainty possible. The standard approach to quantifying model uncertainty
in climate is to form an ensemble of models which are grounded in common fea-
tures but with enough di¤erences to create a spread of predictions. That spread
is then used to represent the uncertainty. This is the approach of the IPCC AR4
where the set of ensembles is provided by the di¤erent participating climate cen-
tres. These are often known as �ensembles of opportunities�as no speci�c e¤ort
has been made to create a representative sample with a pre-envisioned variety.
Indeed, the spread relies on the fact that the various climate centres have di¤er-
ent histories and priorities and work within their own unique political context
which demand an emphasis on particular aspects of the climate. An alternative
is to create ensembles within a single model by introducing perturbations to the
physics. This approach has been pioneered by the climateprediction.net group,
see [28], with some very interesting results.
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Both of these approaches, however, rely on the model(s) to generate assess-
ments of their own uncertainty and this approach is open to debate. There is an
important recognition underlying all of these ideas which is that the uncertainty
should be represented by a probability distribution. To give error bounds is just
too crude for the same reasons as mentioned earlier. In terms of the PDF, they
would become con�dence intervals, but if the PDF has a complex multi-modal
structure, this is overly simplistic and might be deceptive.
In the last section, I described brie�y how the model is put together from the

dynamic core, parametrisations and tuning. A reasonable approach to address-
ing uncertainty would be to assess it for each of these parts of the modeling
process as conditional probabilities and then use Bayes�Law ( ) to calculate
the cumulative uncertainty. This would require unpacking the model and mak-
ing separate judgements about the uncertainty of the model and of the data.
While this has many disadvantages, in terms of e¢ ciency, by comparison with
the ensemble approach used in the context of a �xed and complete model, it
gives an ultimately unbiased assessment of uncertainty: information is put into
the �nal model that comes from physics, to which we assign a representational
uncertainty, and data, with its human and instrument error to which we assign
a certain con�dence. The model uncertainty given all available information is
then calculated using Bayes�Theorem.
To the best of my knowledge, this comprehensive approach is not taken to

uncertainty assessment. Indeed, it would mix together the process of model
formation and quanti�cation of its uncertainty. If it were done, however, data
assimilation would be the appropriate vehicle for its implementation.
Data assimilation has been used to understand the failings of perturbed

models within the climateprediction.net experiment and with striking results.
In [23], Rodwell and Palmer show that outliers in a climateprediction.net ex-
periment can be exposed as failing on short time scales through using the data
to assess the spread-which is another way of describing data assimilation.
Data assimilation is used by statisticians for model calibration but largely in

much simpler systems. It would work in the case of climate models by achieving
the tuning mentioned above through a process of assimilating the data that is at
the basis of the expert judgements being made in the model tuning. If done in
a Bayesian way, the net uncertainty for the �tuned�state would emerge as part
of the process. The procedure could also ensure a level of dynamic consistency
as well as a balance between the demands of data from di¤erent sources.
So, why is this not done? The answer is that data assimilation, in its full

Bayesian form, is not even close to being equipped to deal with problems at the
scale of climate models.

8 Nonlinearity and Dimension

The di¢ culty in creating a practical data assimilation scheme is dealing with
nonlinearity in the model at the same time as its intrinsic high dimension. When
the dynamical core of a climate model is discretised on a current generation
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grid, the dimension of the resulting equation has an order of at least 106. Data
assimilation was developed largely for use in Numerical Weather Prediction
(NWP) and high dimensional systems were being considered from the start.
What I described at the beginning as the applied mathematics perspective in
which a �best estimate� is sought deal, at least in principle, relatively easily
with this dimension issue. Both the Kalman �lter and the variational (least
squares) method adapt easily to high-dimensional problems. But they do so by
linearising the system at some level. Even the Ensemble Kalman Filter which
uses the underlying (nonlinear) �ow to generate ensembles makes a linearity
assumption at the update step by e¤ectively enforcing a Gaussian straitjacket
onto the PDF of the prior. Of course, actually carrying this out raises many
challenges as it involves some very high-dimensional numerical linear algebra,
and the computations become extremely challenging.
In the dynamic core, nonlinearity is present in the advective term, which is

hidden in the total derivative of (1). Nonlinearity will further manifest itself in
the many processes included in a full Earth system model. In the Bayesian for-
mulation, there is no linearisation necessary. Although observation and model
errors are usually represented by Gaussians, the nonlinear evolution of the model
can generate non-Gaussian PDFs (a linear system would preserve the Gaussian
structure) and combining PDFs in Bayes�Theorem has no requirement of Gaus-
sianity.
Nonlinear models can lead to arbitrarily complex PDFs. In [13], a (log-)

posterior PDF for the Lorenz equations is shown. The distribution is a jagged
mess and is clearly far from Gaussian and it is not evident that a �best estimate�
(which would be the mode of the distribution) would be at all useful. Under-
standing what is happening in such chaotic systems as the Lorenz equations
clearly requires a more complete characterisation of the posterior PDF.
The Bayesian formulation can account for nonlinear e¤ects, but that is not to

say these complex PDFs can be calculated. There are many statistical methods
that have been developed to deal with this issue: Markov-Chain Monte-Carlo
methods including Metroplis-Hastings algorithms, Hybrid Monte-Carlo, particle
�lters, and others are arising all the time. But they have largely proven e¤ective
only in low dimensions. The challenges to implementation of these algorithms
in the kind of dimensions required by climate models are great and genuine.
As I have already confessed, I came to this subject through looking at what

seems to be the very special problem of assimilating Lagrangian data. But I
came to realise that it exposes many of the issues arising due to nonlinearity,
and does so in a way that may o¤er lessons for the larger issue of dealing with
nonlinearity and DA in global models.. The saddle e¤ect discussed in Section
5.3 causes a breakdown in Gaussianity. This can be easily seen through a
thought experiment: imagine passing a unimodal (say Gaussian) PDF of initial
conditions toward a saddle point in a low-dimensional system. If the unstable
manifold is one-dimensional, it will break into a bimodal (so non-Gaussian)
distribution very quickly. Since chaotic systems can be viewed as ones in which
repeated passages near saddles occur, it can readily be seen how a PDF like that
in [13] for the Lorenz system will come about. Even the nonlinear e¤ect of a
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shear can cause �lter breakdown, see [2]. For a recent survey on this nonlinearity
vs. dimension issue, see [31]
Lagrangian DA also suggests a possible approach to resolving this problem.

It creates a natural separation into a low-dimensional piece (the Lagrangian
trajectory part) and a high dimensional piece (the Eulerian �ow �eld). A sug-
gestion made by Salman [25] is to treat these separately, using a statistical
method on the Lagrangian part and a linearisation based method on the high-
dimensional part. A natural question is whether such a strategy could work
more generally. In other words: isolate a low-dimensional part that captures
the nonlinear aspects of the problem. This is, of course, not a new thought as
the desire for reduction to low dimensions has underpinned much mathematical
research, particularly in the context of �uids. But, the proposal here is not for
a reduction but an operational division, and this may open up new avenues.

9 So, What�s The Vision?

I have taken it as given that the issues surrounding climate will be a major
driving force for scienti�c research over the coming decades. The question posed
here is whether and how the mathematical sciences will be impacted. I have
argued that the need to reconcile the data and models available will demand
the development of new mathematical ideas and techniques.
Climate raises this issue of optimising the use of data and models in a par-

ticularly poignant way as both play an equal and critical role. I had mentioned
biology at the beginning of this paper and it is worth thinking why data and
model analysis have not become more interwoven under its in�uence. I suspect
that the answer lies in many areas of biology being relatively data-rich and
model-poor; I am thinking of genetics as an example. In comparison, climate is
model-rich and data-poor. But while models are indispensable, data are equally
important as they are what is used to force the models to accord with the actual
climate we live in. This is perhaps a manifestation of a phenomenon common to
all complex systems, such as the atmosphere-ocean, namely that model replicas
cannot be constructed without guidance and validation from measurements.
The mathematical community develops its own mindsets. If we think of

three of the main areas that carry the applications of mathematics: partial
di¤erential equations, dyanmical systems and stochastic processes, each has its
own way of looking at a problem and this leads to a particular formulation. The
perspective of that area is manifest in a language used to describe the problem
that is common to the researchers in the area. This is obviously critical to our
functioning as it means we can work together with some mutual understanding.
If we did not have such common perspectives and languages, we would have
to completely reboot at the start of any communication and would presumably
never get beyond the rebooting phase!
Each of the three areas mentioned above are built around mathematical

models for relating to the real world. A physical (biological, chemical, socio-
logical etc.) situation is encoded in a ordinary, partial or stochastic di¤erential
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equation, and some notion of �solving�the system is sought. Any observations
of the physical state being modeled will come in after the fact.
My contention is that this will change over the coming decades and data

will start to come into the mathematical formulation of an applied problem at
the most fundamental level. If we read a book now on evolution equations, for
example, we will see the basic formulation as consisting of the speci�cation of
an equation, an initial condition and possibly boundary conditions and external
forcing (some of which may be incorporated into the equation). This is an
abstract representation of a �model� and an entity that takes on a life of its
own, independently of the real world. Applied mathematicians will come back
after performing their analysis and relate it to the actual physical situation,
but this is usually, at best, in the background during the analysis phase. This
abstract formulation is important as it is the starting point of the set of ideas
that is built upon it and of our communication with each other.
I am suggesting that this will change and new formulations will include

observational data as part of the basic construction. So, the hypothetical book
on evolution equations might start by laying out an equation, initial condition
etc., and a sequence of observations at later times. Luckily, this will not be
built in a vacuum as this is already the paradigm of such areas as stochastic
control. But if it in�ltrates applied mathematics as a whole, it will change the
landscape signi�cantly and generate all kinds of new mathematical problems.
Climate science, with its balance of dependence on data and models, will

demand of us to make this shift.

10 Acknowledgements

The work of the author is supported by the U.S. National Science Foundation
under grant DMS-0940363 and also by a Wolfson Research Merit Award from
the Royal Society. The work on Lagrangian data assimilation of the author
and collaborators has been supported by the O¢ ce of Naval Research under
N00014-05-1-0791. Much of this work was written while the author was a Vis-
iting Fellow at the Isaac Newton Institute for Mathematical Sciences and he
expresses heartfelt thanks for their hospitality and the stimulating environment
for development of these thoughts and ideas. Thanks also to the Institute for
Mathematics in Geosciences at the National Center for Atmospheric Research
for supporting the Theme-of-the-Year on Mathematics and Climate.
I am particularly greateful to Doug Nychka (IMAGe-NCAR) and Andrew

Stuart (Mathematics-Warwick) who read earlier versions of this essay and made
invaluable comments.

References

[1] Apte, A., Stuart, A.M.,Voss, J., and Jones, C. �Data assimilation: mathe-
matical and statistical perspectives,�Int. J. Num. Meth. Fluids 56, 1033-

20



1046 (2008)

[2] Apte, A., Stuart, A.M., and Jones, C. �A Bayesian approach to Lagrangian
data assimilation,�Tellus A 60 336-347 (2008)

[3] Archer, D.Global Warming: Understanding the Forecast, Blackwell, Oxford
(2007)

[4] Archer, D., Rahmstorf, S. The Climate Crisis: An Introductory Guide to
Climate Change, Cambridge University Press (2009)

[5] Barkmeijer, J., Iversen, T., and Palmer, T.N., �Forcing singular vectors
and other sensitive model structures,�Q. J. R. Meteorl. Soc. 129 2401�
2423 (2005)

[6] Bjerknes, J., �Atmosphere-ocean interaction during the �Little Ice Age�,�
In: WMO-IUGG Symposium on Research andDevelopment Aspects of
Longe-Range Forecasting WMO-162. TP. 79, 77�88 Technical Note No.
66 (1965)

[7] Davidson, O. and Metz, B., �IPCC Special Report on Emissions Scenarios,�
see http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf

[8] Dijkstra, H., Dynamical Oceanography, Springer, Berlin (2008)

[9] Evensen, G., Data Assimilation: The Ensemble Kalman Filter, Springer-
Verlag, Heidelberg (2006)

[10] Gent, P., �Preface to Special Issue on Community Climate System Model
(CCSM),�J. Climate 19 2121�2121 (2006)

[11] Gill, A.E., Atmosphere-Ocean Dynamics, Academic Press, San Diego, CA
(1982)

[12] Goldstein, M., and Rougier, J.C., �Rei�ed Bayesian Modelling and Infer-
ence for Physical Systems,� Journal of Statistical Planning and Inference
139 1221-1239 (2009)

[13] Hairer, M., Stuart, A.M., and Voss, J., �Signal Processing Problems on
Function Space: Bayesian Formulation, Stochastic PDEs and E¤ective
MCMC Methods,�To appear in The Oxford Handbook of Nonlinear Filter-
ing, Crisan, D., and Rozovsky, B. (2009)

[14] Huybers, P., �Compensation between Model Feedbacks and Curtailment of
Climate Sensitivity,�J. Climate 23 3009-3018 (2010)

[15] Ide, K., and Jones C. (eds.) �Data Assimilation: Special Issue,� Physica
D: Nonlinear Phenomena 230 (2007)

[16] Ide. K., �Mathemastical Advances in Datya Assimilation: Special Issue,�
Monthly Weather Review 137 (2209)

21



[17] Kalnay, E., Atmospheric Modeling, Data Assimilation and Predictability,
Cambridge University Press (2003)

[18] Kennedy, M. and O�Hagan, A., �Bayesian calibration of computer models
(with discussion),� Journal of the Royal Statistical Society, Series B. 63
425-464 (2001)

[19] Kuznetsov, L., Ide, K. and Jones, C.�A method for assimilation of La-
grangian data,�Monthly Weather Review 131, 2247-2260 (2003)

[20] Marshall, J., and Plumb, R.A., �Atmosphere, Ocean, And Climate Dynam-
ics,�Elsevier Academic Press, London, UK (2008)

[21] Nychka, D. and Anderson, J.L., �Data Assimilation�in Handbook of Spatial
Statistics, Gelfand, A.E., et al. (eds.), 477-494 CRC Press, Boca Raton,
USA (2010)

[22] Pedlosky, J. Geophysical Fluid Dynamics, 2nd. edition, Springer-Verlag,
New York (1987)

[23] Rodwell, M.J., and Palmer, T.N., �Using numerical weather prediction to
assess climate models,�Q. J. R. Meteorol. Soc. 133, 129�146 (2007)

[24] Salman, H., Kuznetsov, L., Ide, K., and Jones, C. �A method for assimilat-
ing Lagrangian data into a shallow-water equation ocean model,�Monthly
Weather Review 134, 1081-1101 (2006)

[25] Salman, H., �A Hybrid Grid/Particle Filter for Lagrangian Data Assimi-
lation. Part I: Formulating the passive scalar approximation and Part II:
Application to a model vortex �ow,�Q. J. R. Meteorol. Soc., 134, 1539-
1565 (2008)

[26] Salman, H., Ide, K. and Jones, C., �Using �ow geometry for drifter deploy-
ment in Lagrangian data assimilation,�Tellus A 60 321-335 (2008)

[27] Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B.,
Tignor, M., and Miller, H.L. (eds.) Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press (2007)

[28] Stainforth, D.A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame,
D.J., Kettleborough, J.A., Knight, S., Martin, A., Murphy, J.M., Piani,
C.,Sexton, D., Smith, L.A., Spicer, R.A., Thorpe, A.J., and Allen, M.R.,
�Uncertainty in predictions of the climate response to rising levelsof green-
house gases, �Nature 433, 403�406 (2005)

[29] Tremlett, G., �New weapon against climate change on verge of completing
�rst transatlantic voyage,�The Guardian, Thursday December 3 (2009)

[30] van der Schrier, G., and Barkmeijer, J., �Bjerknes�hypothesis on the cold-
ness during AD 1790�1820 revisited,�Climate Dynamics 24, 355-371 (2005)

22



[31] van Leeuwen, P.J, �Nonlinear Data Assimilation in geosciences: an ex-
tremely e¢ cient particle �lter ,�Q. J. R. Metereol. Soc, In Press, (2010)

[32] Vernieres, G., Ide, K., and Jones, C. �Capturing eddy shedding in the Gulf
of Mexico from Lagrangian observations,�to appear in Physica D (2010)

[33] Widmann, M., Goosse, H., van der Schrier, G., Schnur, R., and Barkmeijer,
J., �Using data assimilation to study extratropical Northern Hemisphere
climate over the past millennium,�Clim. Past 6 627-644 (2010)

[34] Wunsch, C., The Ocean Circulation Inverse Problem, Cambridge University
Press (1996)

23


