
Copyright � 2009 by the Genetics Society of America
DOI: 10.1534/genetics.109.106757

The Population Genetics of Adaptation: Multiple Substitutions on
a Smooth Fitness Landscape

Robert L. Unckless1 and H. Allen Orr

Department of Biology, University of Rochester, Rochester, New York 14627

Manuscript received June 29, 2009
Accepted for publication September 3, 2009

ABSTRACT

Much recent work in the theoretical study of adaptation has focused on the so-called strong selection–
weak mutation (SSWM) limit, wherein adaptation is due to new mutations of definite selective advantage.
This work, in turn, has focused on the first step (substitution) during adaptive evolution. Here we extend
this theory to allow multiple steps during adaptation. We find analytic solutions to the probability that
adaptation follows a certain path during evolution as well as the probability that adaptation arrives at a
given genotype regardless of the path taken. We also consider the probability of parallel adaptation and
the proportion of the total increase in fitness caused by the first substitution. Our key assumption is that
there is no epistasis among beneficial mutations.

RECENTLY, there has been a great deal of interest
in the genetics of adaptation. While much of this

interest has focused on experimental studies of adaptive
evolution (e.g., Lenski and Travisano 1994; Holder

and Bull 2001; Rokyta et al. 2005; Weinreich et al.
2006; Betancourt 2009), there has also been consider-
able interest in theoretical analyses of adaptation (re-
viewed in Gillespie 1991; Orr 2005; Joyce et al. 2008),
a topic that was, until recently, surprisingly neglected.

These theoretical studies have considered a number
of questions: What does the distribution of fitness
effects among new beneficial mutations look like? What
does the distribution of fitness effects among fixed
beneficial mutations look like? How does clonal in-
terference among competing mutations distort this
distribution? Do early substitutions generally have
larger effects on fitness than later ones? And how likely
is it that independently evolving populations substitute
the same beneficial mutations?

A number of approaches have been taken to these
and similar questions, including analysis of phenotypic
and DNA sequence-based models. Among sequence-
based studies, a good deal of attention has focused on
the so-called strong selection–weak mutation (SSWM)
scenario, introduced by Gillespie (1983, 1984, 1991).
Under this scenario, selection is strong enough that
mutations are either definitely beneficial or definitely
deleterious and neutral mutations are not allowed. Also,
mutation is weak enough that the population is, at any
point in time, essentially composed of a single wild-type
DNA sequence and mutations are rare enough that
double mutants and the complications of clonal in-

terference (Gerrish and Lenski 1998) can be ignored.
Adaptation in the SSWM domain thus involves the
appearance and substitution of new mutations. It is
usually assumed that adaptation occurs in response to a
sudden change in the environment. Recurrent muta-
tion from the current (and now somewhat maladapted)
wild-type allele produces different beneficial mutations.
While most of these new mutations are lost accidentally
by genetic drift each time they appear, one mutation will
ultimately escape stochastic loss and be substituted. At
this point, the population arrives at a new wild-type
sequence and the process begins anew. Adaptation thus
features the stepwise substitution of single mutations.

Even in this simple SSWM scenario, mathematical
analysis of adaptation has proved difficult. The most
important results were derived by Gillespie (1983,
1984, 1991) himself. Given recurrent mutation from
a wild-type DNA sequence to m different beneficial
mutations, Gillespie calculated the probability that
natural selection would, at the next substitution event,
fix any particular one of these mutations. His result, as
explained in more detail below, revealed that the prob-
ability that a particular mutation is fixed at the next
event depends on the magnitude of its selective advan-
tage relative to those of all available beneficial muta-
tions. Gillespie was thus able to write down transition
probabilities for the next substitution event in adapta-
tion. As empirical studies of adaptation accumulate, it
is of interest to examine the predictability of those
patterns observed when populations adapt via multiple
substitutions.

Here we extend Gillespie’s analysis to allow multiple
substitution events. Specifically, we show how one can
calculate the probability that a population will, after the
substitution of several beneficial mutations, arrive at
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a particular genotype. We also calculate the probability
that evolution takes a particular path to this genotype, as
well as the probability that two independently evolving
populations adapt in parallel, arriving at the same
genotype after multiple substitutions. One of our results
was derived previously by Weinreich et al. (2006). For
completeness and clarity we briefly rederive his result
here. As expected, we find that Gillespie’s one-sub-
stitution results become special cases of our multiple-
substitution results.

As emphasized below, our key assumption is that the
beneficial effects of mutations are independent; i.e., no
epistasis occurs among mutations. As we also emphasize,
our analysis proves more difficult mathematically than
Gillespie’s because the study of multiple substitutions
given independent fitness effects necessarily involves a
complex dependence on history: the identity of muta-
tions fixed late during adaptation depends on the
identity of mutations fixed earlier.

THE MODEL

We consider a single bout of adaptation to a sudden
change in the environment but this bout may involve
multiple substitution events.

Following Gillespie (1983, 1984, 1991), we assume
that Ns ?1, where N is population size (our population
is haploid) and s is a selection coefficient. Although
selection is strong in the sense that Ns ?1, the absolute
magnitude of selection coefficients might well be small. In
fact, SSWM theory generally assumes—and we assume—-
that s is modest enough that the probability of fixation of
a new unique mutation is �2s (Haldane 1927). We also
assume that Nm>1, where m is the per site rate of mu-
tation. Because Nm is small, double mutations occur at a
rate proportional to m2 and can be ignored. (We assume
throughout most of our analysis that mutation rates are
equal at all sites; we relax this assumption later.)

Perhaps most important, we also assume that benefi-
cial mutations have independent fitness effects; i.e.,
there is no epistasis. Thus if a beneficial mutation has
fitness effect s on an original wild-type genetic back-
ground, it will also have effect s after other beneficial
mutations have fixed (Kauffman 1993; Kim and Orr

2005). Independent fitness effects among mutations
represent one extreme in a range of models that allow any
degree of epistasis from complete to none (Kauffman

1993; Macken and Stadler 1995). The case of complete
epistasis among mutations is often referred to as adap-
tation on a rugged or random fitness landscape, while
the case of no epistasis among mutations is often referred
to as adaptation on a smooth or additive fitness land-
scape (Kauffman 1993; Macken and Stadler 1995).
(Strictly speaking, our case of independent fitness effects
among mutations involves multiplicative fitness effects,
which are additive on a log scale and are approximately
additive when selection is weak.)

Because mutations have independent fitness effects,
adaptation will feature the stepwise substitution of each
of the m beneficial mutations. The order in which these
substitutions occur, however, is far from obvious. In
particular, at the beginning of an ‘‘adaptive walk,’’ the
wild-type allele recurrently mutates to many mutations,
only m of which are beneficial (see Figure 1 for a simple
example). After one of these m mutations is fixed (the
first substitution), the new wild-type allele recurrently
mutates to many mutations, only m � 1 of which are
beneficial. These are the same beneficial mutations as
before—and have the same selection coefficients as
before—except that one mutation is no longer available
as it has already been substituted. This cycle of recurrent
mutation followed by substitution continues until all m
beneficial mutations have been substituted; the popu-
lation has now arrived at an optimum and adaptation is,
for the moment, complete.

Throughout our analysis, the selective advantages of
the m beneficial mutations are considered given, i.e., we
are not concerned with draws from a distribution of
selection coefficients, but with the fate of m mutations
of known selective advantage.

RESULTS

Preliminary comments: Each of the mutations avail-
able to evolution is labeled mutation 1, 2, and so on. As
m mutations are available, evolution might involve K ¼
1, 2, . . . , m substitutions. Each of the m mutations is
assumed to reside at a different site in a gene or a small
genome. The relevant field of genotypes available to
evolution therefore includes

Pm
K¼1

m
K

� �
¼ 2m � 1 geno-

types, where m
K

� �
¼ m!=K !ðm � K Þ!. As we generally

assume that mutations are beneficial, all of these
genotypes represent an improvement over the original
genotype. Given enough time, and the assumption of
independent fitness effects, adaptation will ultimately
arrive at a genotype that includes all m mutations.

Although our interest is adaptive evolution, we also,
for reasons of comparison, derive various analytical
results under neutral evolution.

The probability that evolution takes a particular
path: Because it is simple and provides an important
baseline, we first consider neutral evolution involving m
mutations. We then consider evolution by positive
natural selection.

Neutral case: This case can be dealt with by a simple
combinatoric argument. Given m neutral mutations
with K substituted, evolution can take m!=ðm � K Þ!
different paths. As each of these paths has the same
chance of being taken, the probability that evolution
follows a particular path is just ðm � K Þ!=m!.

Selection case: Now consider the case in which sub-
stitutions are driven by positive natural selection. Each
of the m mutations has a known selective advantage
s1; s2; . . . ; sm .
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This case is more complex than the neutral one as it
features a dependence on history: the probability that
an allele will be fixed at the second substitution, for
example, depends on the identity of the allele fixed at
the first substitution. To solve this problem, we, following
Weinreich et al. (2006), generalize Gillespie’s (1984)
approach. From Gillespie, we know that the probability
that a beneficial mutation having advantage sj is fixed at
the first substitution is sj=

Pm
i¼1 si , the selective advantage

of mutation j normalized by the sum of all selective
advantages. (Gillespie’s derivation of this result involved
calculation of the minimum of several exponentially
distributed waiting times, i.e., the waiting times to fixation
of each of the m beneficial mutations.) So if three
beneficial mutations are available (see Figure 1), the
probability that the first substitution event involves
mutation 2 is s2=ðs1 1 s2 1 s3Þ. Conditional on this event,
we then consider the second substitution. The probability
that mutation 3, say, is fixed at the second event is
s3=ðs1 1 s3Þ. It follows that the total probability that
mutation 2 was fixed at the first event and mutation 3 at
the second event is ½s2=ðs1 1 s2 1 s3Þ�½s3=ðs1 1 s3Þ�.

This approach is generalized easily, although some
notation is required. Let Ti represent the identity of the
ith mutation substituted (in the example above, T1¼2
and T2¼3). It is easy to see that, after K substitutions,
the probability, Ppath ¼ PðT1 ¼ t1;T2 ¼ t2; . . . ;TK ¼ tK Þ,
of taking a particular path is

Ppath ¼
Q

K
i¼1 stiQ

K
j¼1ðS �

Pj�1
i¼1 sti Þ

; ð1Þ

where S ¼
Pm

i¼1 si is the sum of selection coefficients
among all m beneficial mutations. Equation 1, which
was essentially derived by Weinreich et al. (2006), col-
lapses to Gillespie’s solution when K ¼ 1.

Equation 1 also lets us recover our earlier neutral
result, given one modification. Equation 1 is undefined
when all selection coefficients equal zero. But, for the
present purposes, the salient aspect of the neutral case is
that all alleles have equal probabilities of fixation. As
expected, then, we recover the neutral solution from
Equation 1 when all selection coefficients are equal (the
si can be arbitrarily small but nonzero).

Comparing the neutral and the selection cases, we see
that, when natural selection acts on a set of mutations

with different-sized beneficial effects, the mean proba-
bility of taking a path, averaged over all paths, equals the
neutral probability (as it must). But some paths now
have a greater-than-neutral probability of being taken
while others have a smaller-than-neutral probability.

The probability of arriving at a particular genotype:
We now turn to our main problem and one that is
subtler than the above: calculating the probability that
natural selection arrives at a given genotype after K
substitutions regardless of the order of substitutions
that led to that genotype. We again begin with the
neutral case and then turn to selection.

Neutral case: The neutral case can again be dispensed
with quickly. Given m beneficial mutations, there are

m
K

� �
different sets of K substitutions, i.e., possible

resulting genotypes, where we ignore order of sub-
stitution. Under neutrality, each genotype has the same
probability of being arrived at. Thus the probability of
arriving at a particular genotype is 1= m

K

� �
.

Selection case: Now consider the case in which sub-
stitutions are driven by positive natural selection. This
case is far more difficult than the neutral one for several
reasons: (i) the probability that any particular path is
taken depends on history; (ii) different paths have
different probabilities of being taken; and (iii) we must
sum probabilities over all relevant paths.

We begin by noting that when K ¼ m, i.e., all available
mutations have been fixed, the probability that evolu-
tion arrives at the genotype that includes all mutations is
obviously one. Only the K , m case is nontrivial. We can
again try to solve this problem by brute force. We saw
above, for example, that, with m ¼ 3 and K ¼ 2, the
probability that selection substitutes mutation 2 fol-
lowed by mutation 3 is ½s2=ðs1 1 s2 1 s3Þ�½s3=ðs1 1 s3Þ�.
Consequently, the probability that evolution arrives
at the genotype that carries mutations 2 and 3 but
not 1, regardless of the order of substitutions, is
½s2=ðs1 1 s2 1 s3Þ�½s3=ðs1 1 s3Þ�1 ½s3=ðs1 1 s2 1 s3Þ�½s2=ðs1 1 s2Þ�.

This brute-force approach becomes unwieldy as m
and K grow. Fortunately, an important simplification is
possible: our problem is analogous to a type of urn
problem. Each ball in an urn represents a beneficial
mutation and each draw of a ball (without replacement)
represents a substitution. What distinguishes our prob-
lem from more familiar urn problems is that different
balls can have different probabilities of being drawn,

Figure 1.—Adaptation when beneficial muta-
tions have independent fitness effects. In the ex-
ample shown, m ¼ 3 beneficial mutations are
available to evolution (open boxes), each having
a different selective advantage. During the time
period shown, two beneficial mutations are
substituted (K ¼ 2; represented by solid boxes).
The fitness of the wild type was initially set to one.
After each substitution, fitness increases as
shown.
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just as different mutations can have different selective
advantages and thus probabilities of fixation. Our
question is: What is the probability of drawing a
particular set of K balls from an urn containing m balls
when each ball has a different probability of being
drawn? (We sum over all relevant orders of draws.) The
solution to this problem is provided by a special case of
the multivariate Wallenius noncentral hypergeometric
(MWNH) distribution (Chesson 1976; Fog 2008). The
appendix provides a brief introduction to this bit of
probability theory.

To use the MWNH distribution, we introduce the
indicator variables, X1, X2, etc. X1 ¼ 1 means that
mutation 1 was substituted, while X1 ¼ 0 means it was
not, and so on. The number of substitutions is just

K ¼
Xm

i¼1

xi : ð2Þ

Given m, K, and the selective advantages of mutations,
we want to find quantities like PðX1 ¼ 0;X2 ¼ 1;X3 ¼ 1Þ:
i.e., the probability that evolution arrives at a genotype
carrying mutations 2 and 3 but not 1. More generally, we
want to find PG ¼ PðX1 ¼ x1;X2 ¼ x2; . . . ;Xm ¼ xmÞ.

The MWNH approach shows that

PG ¼
ð1

0

Ym
i¼1

ð1� tsi=DÞxi dt; ð3Þ

where D ¼
Pm

i¼1 sið1� xiÞ is the sum of selection co-
efficients among mutations that are not substituted.
Equation 3 is one of our main results.

As expected, Equation 3 collapses to Gillespie’s
probabilities when K ¼ 1. For instance, with m ¼ 3,
Equation 3 shows that PðX1 ¼ 0;X2 ¼ 1;X3 ¼ 0Þ ¼
s2=ðs1 1 s2 1 s3Þ, as it must. Similarly, when m ¼ 3

and K¼ 2, Equation 3 shows that PðX1 ¼ 0;X2 ¼ 1;X3 ¼
1Þ ¼ ½s2=ðs1 1 s2 1 s3Þ�½s3=ðs1 1 s3Þ�1 ½s3=ðs1 1 s2 1 s3Þ�
½s2=ðs1 1 s2Þ�, as we found by brute force. The important
point is that Equation 3 allows us to find the probability
of arriving at any arbitrary genotype by natural selection,
no matter how many beneficial mutations are available
or how many substitutions occur. To take an example,
consider the situation described in Table 1: m¼ 9, K¼ 4,
and the selection coefficients among beneficial muta-
tions are as shown in the table. Table 1 provides the
probability of arriving at the ‘‘best’’ genotype after four
substitutions (the genotype that includes the four
mutations with the largest selection coefficients) as well
as the probability of arriving at the ‘‘worst’’ (but still
adaptive) genotype after four substitutions (the geno-
type that includes the four mutations with the smallest
selection coefficients). These probabilities, which were
all calculated from Equation 3, can be quite different:
natural selection is more likely to push an adapting
population to certain genotypes than others.

Again, we can also recover our earlier neutral results,
given the same modification as before: because Equa-
tion 3 requires that D . 0, we cannot use the MWNH
machinery when all selection coefficients equal zero.
However, if all alleles have equal selection coefficients
and thus fixation probabilities, we recover the neutral
solution from Equation 3.

By analogy with our earlier results, it is also easy to see
that, when natural selection acts on a set of mutations
with different-sized beneficial effects, the mean proba-
bility of arriving at a genotype after K substitutions
(averaged over all relevant genotypes) equals the neu-
tral probability (as it must). The difference is that, given
K substitutions, some genotypes now have a greater-
than-neutral probability of being arrived at and others

TABLE 1

The probability that evolution arrives at particular genotypes

Selection coefficients Mean PG

PG(1, 2, 3, 4)
(most likely
genotype)

PG(6, 7, 8, 9)
(least likely
genotype)

PGð1; 2; 3; 4Þ
PGð6; 7; 8; 9Þ E ½sfixed jK ¼ 1� E ½propK¼1�

Neutral or equal s All 0 or all equal 0.0079 0.0079 0.0079 1 0.0200a 0.1111a

Selection (small
variation in s)

0.024, 0.023, 0.022,
0.021, 0.020, 0.019,
0.018, 0.017, 0.016

0.0079 0.0142 0.0041 3.443 0.0203 0.1130

Selection (large
variation in s)

0.039, 0.035, 0.030,
0.025, 0.020, 0.015,
0.010, 0.005, 0.001

0.0079 0.0972 2.226 3 10�5 4296 0.0279 0.1550

All numerical values derive from analytical solutions with m ¼ 9 mutations and K ¼ 4 substitutions. In all cases, the mean se-
lection coefficient among the available beneficial mutations equals 0.02. Mean PG is the mean probability of arriving at a genotype,
averaging over all possible genotypes. Calculations assume 2s approximations to the probability of fixation. Essentially exact sol-
utions using 1-e�2s for the probability of fixation differ slightly from those shown: e.g., in the large variation case (which represents a
worst case for SSWM approximations), the probabilities of the most and the least likely genotype, expected fitness gain due to the
first substitution, and proportion of total fitness gain due to the first substitution are 0.0945, 2.463 3 10�5, 0.0278, and 0.154,
respectively.

a Results assume all si ¼ 0.02.

1082 R. L. Unckless and H. A. Orr



have a smaller-than-neutral probability of being arrived
at (again, see Table 1 for examples). The MWNH
approach allows us to quantity the effect of this dis-
tortion of neutral probabilities due to positive natural
selection (see Table 1).

Expected fitness and proportion of fitness increase
due to first substitution: We can also write down the
expected fitness at each substitution. Matters are espe-
cially simple, and interesting, at the first substitution.
In particular, the expected s for the mutation fixed at
K ¼ 1 is

E ½sfixed jK ¼ 1� ¼ s1
s1

S

� �
1 s2

s2

S

� �
1 . . . 1 sm

sm

S

� �

¼
P

m
j¼1 s2

j

S
¼ �s 1

Var½s�
�s

;

ð4Þ

where sfixed is a selection coefficient among fixed (not
merely new) mutations, S is again the sum of selection
coefficients among new beneficial mutations, �s ¼ S=m is
the mean selection coefficient among new beneficial
mutations, and Var½s� ¼

Pm
i¼1ðsi � �sÞ2=m is their vari-

ance. Equation 4, which is implicit in Orr (2002),
captures the obvious, but important, fact that natural
selection outperforms random choice among beneficial
mutations. If, at the first substitution, evolution were to
randomly choose a mutation for fixation, we would have
E ½sfixedjK ¼ 1� ¼ �s. Instead, evolution by natural selec-
tion does better than this. How much better depends on
the variance among selection coefficients. Table 1
confirms that, when variation in selection coefficients
is appreciable, the expected fitness gain due to the first
substitution can be substantially larger than the mean
selection coefficient among new mutations. (Because
it would violate our SSWM assumptions—and in partic-
ular our 2s approximation to the probability of
fixation—Var½s� in Equation 4 cannot grow too large.
Equation 4 is, therefore, a SSWM approximation.) Note
that because Equation 4 concerns only the first sub-
stitution, it assumes nothing about epistasis among
beneficial mutations.

We can also calculate the expected proportion,
E ½propK¼1�, of the total increase in fitness occurring
over a complete bout of adaptation that is due to the first
substitution. Once all m beneficial mutations are sub-
stituted, fitness increases by approximately S (where the
approximation neglects higher-order terms involving
products of the si). From Equation 4, then, we have

E ½propK¼1�

� E ½sfixed=S jK ¼ 1� ¼
P

m
j¼1 s2

j

S2 ¼ 1

m
1

Var½s�
m�s2 : ð5Þ

Equation 5 shows that a disproportionately large share
of the total increase in fitness is caused by the first
substitution: E ½propK¼1�. 1=m, assuming only weak

selection, independent fitness effects, that multiple
mutations are available, and that not all have the same
selective advantage (for numerical examples, see Table
1). Put differently, adaptation is characterized by a curve
of diminishing returns through time, with earlier
substitutions having larger effects on fitness than later
ones. While this pattern has been noted in many
previous studies of adaptation (Orr 1998, 2002; Joyce

et al. 2008), Equation 5 provides a simple demonstration
of the point, at least when mutations have independent
effects. Two special cases are also worth noting. First, if
only m¼ 1 beneficial mutation is available, then Var½s� ¼
0 and, from Equation 5, E ½propK¼1� ¼ 1, as it must.
Second, if multiple beneficial mutations are available
but all have the same selective advantage, then Var½s� ¼
0 and E ½propK¼1� ¼ 1=m; i.e., the first substitu-
tion contributes 1/m to the total increase in fitness,
and each subsequent substitution makes the same
contribution.

It is far more difficult to derive the expected fitness at
later substitutions or the proportion of the total fitness
increase due to later substitutions, although the MWNH
approach allows some progress. After K substitutions,
the probability that adaptation has arrived at a particu-
lar genotype, PG, is given by Equation 3. The increase in
fitness over the fitness of the starting allele is
�
Pm

i¼1 sixi , where it is understood that only K of the
xi terms are nonzero (as only K substitutions occurred)
and we again neglect higher-order terms involving
products of the si. Summing over the m

K

� �
possible

combinations of mutations that involve K substitutions,
we get

E
X

sfixed jK substitutions
h i

�
X�m

K

�
combinations

j¼1

Xm

i¼1

sixi;j

 !
PG ;j

" #
;

ð6Þ

where j is an index that represents each of the
combinations of K substitutions given m mutations.
Equation 6 is obviously only notation that represents
the desired solution and it must be evaluated numeri-
cally after listing the m

K

� �
possible combinations of

substitutions. In a few simple cases, e.g., m ¼ 3, K ¼ 2,
closed-form solutions to Equation 6 are possible but
even these are complicated (not shown).

Probability of parallel evolution: So far we have
considered the evolution of a single population. But
we can use the approaches taken above to consider the
evolution of two or more populations. In particular, we
can consider the probability that two or more popula-
tions evolve in parallel, substituting the same mutations.

For simplicity, we consider a scenario in which two
strictly allopatric populations begin with the same wild-
type sequence and experience the same environmental
change. Both populations are thus presented with the
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same set of m mutations and—because the populations
share the same new environment—these mutations
have the same selective advantages, s1; s2; . . . ; sm .

We now consider the probability that, after K sub-
stitutions, both populations arrive at the same genotype,
whether or not they take the same path to it. In the
neutral case, we saw that the probability that a popula-
tion arrives at a particular genotype is 1= m

K

� �
. The

probability that two independently evolving popu-
lations arrive at this genotype is thus just 1= m

K

� �2
.

Because there are m
K

� �
different genotypes that include

K substitutions, the total probability that two popula-
tions arrive at the same genotype after K substitutions is
K !ðm � K Þ!=m!.

In the positive selection case, similar logic shows that

Pðsame genotypeÞ ¼
X�m

K

�
combinations

j¼1

P 2
G;j ; ð7Þ

where PG is given by Equation 3. Equation 7 is again
obviously only notation that represents the desired
solution; it must be evaluated numerically after listing
all m

K

� �
combinations of genotypes that include K

substitutions. It is worth noting that Equation 7 collap-
ses to the neutral probability of parallel evolution when
all si are equal, as it should. Similarly, when K¼m, i.e., all
beneficial mutations have been substituted in both
populations, P(same genotype) ¼ 1, as expected.

Analogous calculations of the probability that two
independent populations not only arrive at the same
genotype but also take the same path to it are also
possible but are complicated; we suppress them here.
Again, though, they can be calculated numerically from
Equation 1, squaring the resulting probabilities and
summing over all paths to the same genotype.

Extensions: Finally, we note that the above analysis
can be generalized in several ways. First, we have
assumed, following most SSWM theory, that the rate of
mutation to each mutation is equal. This need not be
true. The above results can be extended to allow for
mutational bias by replacing selection coefficients, si, in
the right-hand side of our equations by mi si, where mi is
the rate of mutation to the ith allele (see also Rokyta

et al. 2005). The biological point is that the probability of
substituting a particular mutation at the next step in
evolution depends on the product of its advantage and
the rate at which it appears by mutation. Modifying
Gillespie’s (1983, 1984) result, the probability that the
jth mutation is substituted at the next step in evolution
now takes the form mj sj=

Pm
i¼1 mi si .

Second, we have assumed, following most SSWM
theory, that the selective advantage of beneficial muta-
tions is modest enough that the probability of fixation is
P � 2s. But we can allow arbitrarily large selective
advantages by using the more exact probability P �
1� expð�2sÞ throughout. Analytic results obviously

become cumbersome but numerical calculation is
straightforward.

Third, we have assumed that adaptation involves new
mutations. Our results can be extended, albeit approx-
imately, to alleles from the standing genetic variation, so
long as alleles start at very low frequencies. Then, all
copies of a mutation enjoy nearly independent proba-
bilities of fixation and initial frequency is easily in-
corporated into our analysis. In particular, if alleles have
low mutation–selection balance frequencies, we can
replace si in the right-hand side of our solutions by
mi sb;i=sd;i , where sd,i is a mutation’s disadvantage in the
old environment and sb,i is its advantage in the new one
(similarly, see Orr and Betancourt 2001). The prob-
ability that the jth mutation is substituted at the next
step in evolution now takes the form ðmj sb;j=sd;jÞ=Pm

i¼1 mi si=sd;i . While this approach assumes that muta-
tions start at deterministic mutation–selection equilib-
rium frequency (i.e., it ignores the stationary distribution
of starting frequency), computer simulations confirm
that it provides a reasonably accurate approximation
when the absolute numbers of mutations segregating
are very small (not shown).

DISCUSSION

We have extended Gillespie’s (1983, 1984, 1991)
analysis of adaptation in the SSWM domain to allow
multiple substitutions. In particular, while Gillespie
showed how one can calculate the probability that, at
the next substitution, evolution arrives at a genotype
that includes any one of m available beneficial muta-
tions, here we calculate the probability that, after K sub-
stitutions, evolution arrives at a genotype that includes
a particular set of the m mutations. This calculation
builds on earlier work, by both Gillespie and Weinreich

et al. (2006), that allowed calculation of the probability
that evolution takes a particular path to this genotype.
We also calculate the expected fitness effect of the first
substitution, the (approximate) proportion of the total
increase in fitness caused by the first substitution, and
the probability of parallel adaptation between two
independently evolving populations. For several of
these statistics, we compare our results with those ex-
pected under neutral evolution. Our key biological con-
clusion is that positive natural selection distorts the
probability that evolution arrives at a given genotype or
takes a given path to this genotype away from the
analogous neutral probabilities. While this effect is
obvious intuitively, our analysis lets us quantify it (for
numerical examples, see Table 1).

The calculations presented here are generally more
difficult than those in Gillespie’s classic SSWM work.
The reason is simple. When considering evolution one
step into the future, evolution features no history
dependence. The identity of the mutation fixed at the
next substitution in evolution depends only on the
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present state of the population. But when considering
evolution several steps into the future, evolution does
feature history dependence. The identity of the muta-
tion that is most likely to get fixed at substitution two, for
instance, depends on the identity of the mutation fixed
at substitution one. Statistically, then, our problem
involves sampling without replacement: given a set of
m beneficial mutations, one mutation is fixed at each
substitution event, progressively shrinking the pool of
mutations available to evolution. Also, as Gillespie
emphasized, the sampling of mutations at each sub-
stitution involves a kind of competition: each of the
beneficial mutations available at any point in time can
be thought of as competing with all others for fixation at
the next substitution event. The probability that a
particular beneficial mutation ‘‘wins’’ this competition
depends on its selective advantage relative to those of all
available beneficial mutations. Combining these prop-
erties of sampling without replacement and sampling
with competition, we find that the solutions to several of
our problems—for instance, calculation of the proba-
bility that adaptation arrives at a given genotype after K
substitutions—involve fairly obscure probability theory,
e.g., the multivariate Wallenius noncentral hypergeo-
metric distribution.

Given that our solution to the probability that
adaptation arrives at a particular genotype given multi-
ple substitutions includes an integral, it may be asked if
it represents an improvement over, say, a solution
derived from Monte Carlo simulation of adaptation
(given known selection coefficients). We believe that
the answer is yes, for at least two reasons. First, and
technically, Equation 3 allows accurate numerical cal-
culation of probabilities even when some relevant paths
involve extremely low probabilities; these extreme
probabilities might not be accurately found by Monte
Carlo simulation of adaptation. (Given that Equation 3
allows accurate determination of the probabilities of a
priori rare outcomes—but outcomes that might none-
theless occur in actual experiments—it may serve as the
basis for statistical tests that ask, e.g., whether beneficial
fitness effects are actually independent.) Second, and
more generally, although Equation 3 does not allow
ready biological insight, it does represent the solution to
the simplest scenario for adaptation: adaptation from
new mutations in the SSWM limit and with no epistasis.
It may well be that more complex scenarios, e.g., those
involving epistasis, will yield analytic solutions that are
variations on Equation 3. If so, the pattern of these
variations might well provide insight into the biology of
these different scenarios.

Our conclusions rest on several assumptions. Most
obviously, we make standard SSWM assumptions: selec-
tion is strong in relative terms (Ns ? 1) but modest in
absolute terms (s is small enough that P � 2s approx-
imations are appropriate); also, mutation is rare enough
that the population is, at any point in time, composed of

a single wild-type sequence. Perhaps more important,
most of our results rest on the assumption that muta-
tions have independent fitness effects; i.e., the beneficial
effect of a mutation does not depend on genetic
background. This is a significant assumption and our
results would almost certainly change under epistasis.
(Indeed this explains why we have not attempted to
compare the present results with empirical ones; in several
of the best experiments reported to date, e.g., Weinreich

et al. 2006 and Betancourt 2009, epistasis for fitness
among beneficial mutations is evident.)

It is important to emphasize therefore that we analyze
the independent fitness case not because we believe it
represents biological reality; it almost certainly does not.
Instead we analyze this case because it represents the
natural starting point—and a plausible null model—for
more complex and realistic analyses.

For several of our results, the effects of epistasis could,
in principle, be incorporated. For instance, after the
fixation of the first beneficial mutation the selection
coefficients for the remaining m� 1 mutations could be
reassigned (allowing epistasis), and similarly after the
second substitution, and so on. One could then calcu-
late the probability that a given path is taken during
evolution using these conditional selection coefficients.
This is essentially the approach taken by Weinreich

et al. (2006). In principle, one could sum over all
relevant paths, finding the total probability of arriving
at a given genotype. Unfortunately, however, these
calculations are essentially brute force and numerical.
We see no way of deriving general analytic solutions to
the probability of arriving at a given genotype, e.g., an
analog of our Wallenius distribution result, when
arbitrary forms of epistasis are allowed.

In any case, we do not pursue this complex problem
here. Our hope is that the independent fitness case,
while simple—and likely simplistic—can at least serve as
a baseline against which more complex scenarios can be
compared.
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APPENDIX: THE WALLENIUS DISTRIBUTION

The hypergeometric distribution describes the num-
ber of balls of a given color drawn from an urn when
sampling without replacement (Ross 1994). When
more than two colors are present in the urn, the
appropriate distribution is the multivariate hypergeo-
metric. Our problem is more complex than this,
however, as we sample not only without replacement
but with bias: some balls (i.e., mutations with larger
selective advantages) are more likely to be drawn
(substituted) than others (those with smaller selective
advantages). Sampling, in other words, features com-
petition among objects. When sampling is without
replacement and with bias, the distribution of balls
drawn from an urn is given by the Wallenius noncentral
hypergeometric distribution (Chesson 1976; Fog 2008;
see also http://www.agner.org/random/theory/nchyp1.
pdf and http://en.wikipedia.org/wiki/Wallenius%27_
noncentral_hypergeometric_distribution).

The multivariate form of this distribution is

Pðdraw xi balls of the ith colorÞ

¼
Yc

i¼1

�
bi

xi

�ð1

0

Yc

i¼1

ð1� tsi=DÞxi dt;

where bi is the number of balls in the urn of the ith color,
c is the total number of colors present, si measures the
strength of the bias for drawing a ball of the ith color
(these si can be scaled arbitrarily), and D ¼Pc

i¼1 siðbi � xiÞ.
In our biological problem, there is one mutant of

each type (bi ¼ 1 for all i) and the total number of
mutant types is m. The above distribution thus becomes

Pðdraw xi balls of the ith colorÞ ¼
ð1

0

Ym
i¼1

ð1� tsi=DÞxi dt;

as in the text.
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