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Abstract: Mechanical system dynamics plays an important role in the area of computational 
structural biology. Elastic network models (ENMs) for macromolecules (e.g., polymers, 
proteins, and nucleic acids such as DNA and RNA) have been developed to understand the 
relationship between their structure and biological function. For example, a protein, which is 
basically a folded polypeptide chain, can be simply modeled as a mass-spring system from the 
mechanical viewpoint. Since the conformational flexibility of a protein is dominantly subject to 
its chemical bond interactions (e.g., covalent bonds, salt bridges, and hydrogen bonds), these 
constraints can be modeled as linear spring connections between spatially proximal 
representatives in a variety of coarse-grained ENMs. Coarse-graining approaches enable one to 
simulate harmonic and anharmonic motions of large macromolecules in a PC, while all-atom 
based molecular dynamics (MD) simulation has been conventionally performed with an aid of 
supercomputer. A harmonic analysis of a macroscopic mechanical system, called normal mode 
analysis, has been adopted to analyze thermal fluctuations of a microscopic biological system 
around its equilibrium state. Furthermore, a structure-based system optimization, called elastic 
network interpolation, has been developed to predict nonlinear transition (or folding) pathways 
between two different functional states of a same macromolecule. The good agreement of 
simulation and experiment allows the employment of coarse-grained ENMs as a versatile tool 
for the study of macromolecular dynamics. 
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1. INTRODUCTION 
 
One of the most interesting research items in 

modern structural biology is the protein folding 
problem. It has been believed that a protein’s 
knowledge of “how to fold” is encoded in its amino 
acid sequence since Anfinsen et al. [1] experimentally 
showed a denatured protein can reproduce its native 
folded conformation. As many protein structures have 
been revealed with high resolution by experiments 
such as X-ray crystallography and nuclear magnetic 
resonance (NMR), various computational approaches 
have been proposed to elucidate the relationship 

between structure and the folding (or unfolding) 
dynamics of macromolecules. 

Molecular dynamics (MD) simulation is one of the 
most common tools to predict or explain macro-
molecular motions at atomic detail as computer power 
increases rapidly and the empirical potential model 
which governs the system dynamics becomes accurate. 
However, such an all-atom simulation is currently 
limited to produce only early stage (on the timescale 
of nanoseconds) of timely long-range (microseconds 
or milliseconds) and topologically large motions. 
Furthermore, the structural information of large 
macromolecular assemblies is often obtained by a 
low-resolution experiment such as cryo-EM (i.e., all-
atom coordinates required for MD simulation are not 
available in this case) and these large systems 
sometimes suffer from memory problems during 
computation, even using supercomputers. To overcome 
these drawbacks, various coarse-graining approaches, 
most of which are designed for proteins, have been 
developed and recently reviewed by Tozzini [2]. 

In this paper, we briefly review a variety of coarse-
grained elastic network models (ENMs) based on our 
previous works. In an ENM, a macromolecule is 
modeled as a spring network among coarse-grained 
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representatives from single atoms to rigid clusters 
under a certain connection rule to represent chemical 
interactions. As the first step toward protein folding 
research, we have studied vibrational behaviors of a 
macromolecule using normal mode analysis (NMA), 
traditional in engineering but newly addressed in 
structural biology, from its native structure reported 
on the Protein Data Bank [3]. NMA results reflect the 
equilibrium dynamics of the given macromolecule. 
On the other hand, large conformational changes 
between two functionally different forms of a same 
macromolecule (over an energy barrier in the 
chemical viewpoint) have also been deduced by 
solving an optimization problem called Elastic 
Network Interpolation (ENI) in which only structural 
information is considered as constraints for the cost 
function. We also discuss the robustness of the 
proposed ENM against the change of stiffness values 
and present a practical way how to handle large 
macromolecular systems using sparse functions in 
Matlab. Both harmonic and anharmonic analyses 
based on ENM play an important role in 
understanding the relationship between structure and 
function of macromolecules. Furthermore, they might 
serve as a useful computational tool for protein 
structure prediction and design.  

 
2. METHODS 

 
2.1. Coarse-grained ENM 

The mathematical model of a multiple degree-of-
freedom (MDOF) linear mass-spring system has been 
recently utilized to the study of the macromolecular 
dynamics. In ENM, the system is represented by an 
elastic network of representatives connected by linear 
springs. Although elastic network models have been 
used with all-atom descriptions [4,5], various coarse-
graining (sampling) approaches have been proposed to 
reduce the computational burden of all-atom based 
simulation for large macromolecules. For instance, 
Fig. 1 illustrates a conventional Cα  coarse-grained 
ENM of a protein [6-8]. A protein is a long chain of 
amino acids linked by polypeptide bonds. Only Cα  
atoms are sampled from each amino acid along the 
main chain. Here the Cα  atom is the first carbon 
atom in the center of an amino acid to which other 
functional groups are attached. Likewise, P atoms of 
nucleotides are usually adopted as representatives to 
model the DNA or RNA structures with a similar 
resolution to Cα  coarse-graining of the proteins (see 
Fig. 2). Additionally, heavy atoms in sugar and base 
ring structures of nucleotides could be sampled to 
reflect much more detailed base-pair interactions on 
the ENM [9]. We can also build up a coarse-grained 
ENM for a polymer by choosing only C atoms in each 
amide group, in which the primary (covalent) bonds 

through a polymer backbone and the secondary 
(hydrogen) bonds between polymer chains can be 
represented by spring connections. 

One of the efficient ways to produce large 
macromolecular machines and assemblies in nature is 
to assemble repeated units. Most of viruses thereby 
use some sort of genetic material to encode a small 
repeated protein unit for their shell structures called 
capsid. In light of this fact, a symmetry-constrained 
ENM was developed and applied to reveal the HK97 
virus maturation process [10]. The symmetric feature 
of a system can reduce its DOF significantly because 
only a repeated unit with symmetry constraints 
applied is needed to model the whole structure. To 
implement this symmetric feature on the ENM, group 
theory has been utilized. The detailed mathematical 
descriptions are available in our previous paper [10]. 

A rigid-cluster ENM has also been developed for 
further simplification of the ENM. In this model, a 
macromolecule is modeled as a set of rigid bodies 
interconnected with linear springs. Since the large-
scale movements in macromolecules are highly 
engaged in relative motions among those rigid 
domains, the rigid-cluster descriptions enable to catch 
the global dynamics of the given system inexpensively. 
The computational cost no longer scales with the size 
of macromolecules. Instead, it depends strongly on the 
number of rigid domains into which the system can be 
structurally decomposed. Both rigid-cluster NMA and 
ENI have been developed and the resulting modes and 
pathways have been compared with those of αC  
coarse graining, respectively [11,12]. 

It is not necessary that a rigid domain is modeled in 
the manner of all-atom modeling, even αC  coarse 
graining. That may cause an unnecessary compu-

 
 

Fig. 1. Representation of protein structure as a coarse-
grained elastic network. The lac repressor
(PDB code : 1LCC) is illustrated with a ball
and stick representation (left). Only αC
atoms are selected as representatives and the
spring connections between atoms within a
cutoff distance of 8Å are represented by the
grey lines (right). 
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tational burden. In contrast, oversimplification when 
using rigid-cluster ENM may destroy the generality of 
flexible regions of a macromolecule too much. For 
this reason, hybrid ENM has been proposed as a 
tradeoff between Cα  coarse graining and rigid-
cluster modeling in which rigid clusters and point 
masses are linked to one another with linear springs. 
The conformational change of GroEL-GroES 
Complex, a large protein machinery to refold 
misfolded proteins, has been investigated using the 
hybrid ENM within reasonable computational time 
(less than a week in a PC, not like an MD simulation 
in a supercomputer for a few months or a year) and 
acceptable resolution of the resulting motions [12]. 

Fig. 2 summarizes the features of various 
applications of coarse-grained ENMs. One can choose 
a proper coarse-graining level (from all-atom 
description to rigid-cluster representation) as the 
tradeoff between computational efficiency and 
physical reality of the model. 

 
2.2. Modeling parameters in ENM 

The dynamic behaviors of ENMs of macro-
molecules might vary with modeling parameters such 
as linking matrix k and its spring coefficient kij Three 
different methods have been developed to create 

linking matrices as follows: the distance-cutoff 
method [6], the number-cutoff method [7,8], and the 
bond-cutoff method [13]. 

The simplest one is to use a cutoff distance with a 
constant spring constant as described in the previous 
section. Large cutoff values increase the number of 
interacting pairs and the linking matrices become 
denser (i.e., the elastic networks tend to be stiffer). 
Consequently, the computation time tremendously 
increases and the amplitude of fluctuations decreases. 
On the other hand, short cutoff values strongly force 
the residues to be in contact with local neighbors only. 
We may obtain more than six zero eigenvalues in 
NMA. Six zeros obviously correspond to the rigid-
body motions in space, whereas the others result from 
the lack of spring connections which represent the 
constraints of the system. For a αC  coarse-grained 
ENM of a protein, it is empirically observed that a 
cutoff value should be longer than 11Å to guarantee 
the system stability. Here Å (= 10-10m) is the default 
unit of length in proteins. 

The number-cutoff method has been, alternatively, 
developed to create a uniformly sparse linking matrix. 
The linking matrix can be generated by imposing a 
cutoff on the number of connections. That is, a 
representative atom is connected to neighboring atoms 

 
 
Fig. 2. Illustration of the various coarse-grained ENMs of macromolecules. Main characteristics, schematic

representations, and example structures are reported for each model. Symmetry-constrained model can be
applied together with any other coarse-grained model. 
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in order from the closest one until the fixed number of 
connection is reached. This method cannot reflect 
local dynamics of the system on the ENM because all 
atoms have the same number of connections, but 
reduce computational cost for generating realistic 
conformational transitions in ENI. 

Internal coordinate representation has been widely 
used to describe the conformational changes of a 
polymer. It is analogous to a serial robot mechanism 
connected with different types of joints. Given a 
system composed of n  point masses, the total DOF 
is n3 . Of course, 6 are for the rigid-body motions, 
and 63 −n  are internal DOF composed of 1−n  
bond lengths (prismatic joints), 2−n  bond angles 
(revolute joints at each pivot point), and 3−n  
torsion angles (revolute joints in the middle of each 
link) as shown in Fig. 3. These internal variables are 
strongly localized in the sequence of a macromolecule 
and the distance constraints in ENMs can be described 
as functions of those variables, even nonlinear. Thus, 
the spring connections from one residue up to 3 
neighbors along the backbone of a protein fully 
guarantee no loss of DOF. That is, 

1, | | 3,ijk if i j= − ≤    (1) 

where obviously ji ≠  for all i  and the total 
number of spring connections is equal to that of 
internal variables. Since the distance between two 
consecutive αC  atoms is approximately 3.8Å [14], 
the backbone connections suggested here provide an 
analytic explanation about our earlier observation of 
the minimum distance-cutoff value needed to stabilize 

the elastic network. 
Using this fact, the bond-cutoff method has been 

recently proposed to better reflect the chemical 
interactions within a macromolecule on its ENM. In 
this model, the system stability is accommodated by 
spring connections along the backbone according to 
(1) and then the other connections are added based on 
the chemical bond information such as sulfide bonds, 
hydrogen bonds, ionic bonds, and van der Waals 
interactions. This method provides more accurate and 
sparser ENMs than the distance-cutoff method [13]. 

Table 1 shows the density of linking matrices and 
computation time of NMA. Here we use 12Å as a 
distance cutoff. As the size of a protein becomes larger, 
computational time for calculating the full sets of 
normal modes increases tremendously. To accommo-

i

i+1

i+2

i+3

di di+1

di+2

θi+1θi

φi

(a)

(b)

 
 
Fig. 3. Labeling internal variables of a polymer chain

and the analogous serial robot mechanism. (a)
Bond lengths di, bond angles iθ , and torsion
angles iφ  are, respectively, determined by
two, three, and four consecutive atoms. (b)
Prismatic and revolute joints of the serial link
corresponds to the internal variables in (a). 

 

Table 1. Linking matrix density and computational 
efficiency of NMA with the cutoff distance 
of 12Å. 

PDB code No. of 
residues Densitya(%) Time1b(sec) Time2c(sec)

1LCC 
1HHP 
1ATN 
1LFH 
1KJU 

51 
99 
372 
691 
994 

42.4 
23.5 
8.1 
4.6 
3.4 

1.0 
5.4 

148.9 
872.2 
2542.5 

1.2 
2.3 
10.7 
27.9 
39.4 

a Percentage of nonzero elements in the linking matrix. 
b Elapsed time for calculating all normal modes on a 1.5GHz 

Pentium with 512MB memory. 
c Elaspsed time for the first 20 nonrigid-body modes 

selectively calculated by using the “eigs” command in 
Matlab with the sparse form of a stiffness matrix. 

 

 

 
 
Fig. 4. Sensitivity of eigenvalues to perturbations of

stiffness value. The nominal stiffness value is
1 for all springs. This value is randomly
perturbed within 50%. That is, stiffness values
vary from 0.5 to 1.5. The 10% and 50% plots
show the errors between the nominal
eigenvalues and the perturbed eigenvalues,
respectively (the 5% plot is not displayed
here). These changes are negligible compared
to the highest nominal eigenvalue of 15.5. 
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date this problem, we alter the matrix into the sparse 
form and use the “eigs” command in Matlab to find 
only a few low-frequency modes with relatively little 
computational cost. 

As another variation of ENM, each stiffness value 
kij is randomly perturbed from the unity in this context. 
Fig. 4 shows an example of the sensitivity of 
eigenvalues when the stiffness value is perturbed by 
5%, 10%, and 50% from the nominal value, 
respectively. The ENM used here is constructed using 
the distance-cutoff method for the HIV-1 protease 
(PDB code: 1HHP). It appears that the change of 
eigenvalues is negligible. Also, the low-frequency 
modes are insensitive to perturbations of stiffness 
value as shown in Fig. 5. Hence, ENM may serve as a 
robust tool to capture the main dynamics of 
macromolecules in spite of the lack of physical 
properties such as spring constant. 

 
2.3. Harmonic fluctuation computed by NMA 

The complete mathematical descriptions of NMA 
and ENI based on ENM were already addressed in our 
previous papers [7,8]. Nevertheless, the following 
equations are reproduced here to make a clear 
explanation. 

Given a set of coordinates of n  representative 
atoms (e.g., αC  atoms in the case of proteins), the 
global mass matrix and the global stiffness (i.e., 

Hessian) matrix can be derived. The position of the 
thi  atom at time t  is denoted as 

[ ] 3)(),(),()( Rtztytxtx T
tiii ∈=

G
.  (2) 

The total kinetic energy has the form 
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In the present case, the global mass matrix M  is 
diagonal. 

The total potential energy has the form 
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where d is a cutoff distance between Ca atoms and kij 
is the ( ,thi  thj ) element of k called the linking matrix 
being unity for all contacting pairs and zero for pairs 
not in contact. For the small deformations, it can be 
approximated in a classical quadratic form 

,
2
1 δδ

GG
KV T=     (9) 

where K  is called the stiffness matrix (see [7] for 
more details). This matrix is nothing more than the 
second derivatives of the harmonic potential function 
with respect to the generalized coordinates. 

Finally, the equations of motion for a coarse-
grained protein model can be obtained as  

.0
GG��G =+ δδ KM     (10) 

The fluctuation dynamics of the structure can be 
obtained by solving (10). Eigenvalues of the weighted 

 
 
Fig. 5. Sensitivity of non-rigid normal modes to

perturbations of stiffness value. The first 10
non-rigid modes, denoted as '

jvG , are taken
from each perturbation. They are used to
approximate each nominal normal mode
denoted as ivG . The correlation between each
nominal normal mode and the approximated

one, denoted as 10 '
1

app
i ij jj

v c v
=

=∑G G , is presented

by the cosine value of the angle difference
between two vectors denoted as θ . It is
observed that low-frequency modes are not
sensitive to changes of stiffness value. 
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stiffness matrix are the squared natural frequencies of 
the harmonic motions and the corresponding 
eigenvectors reflect the mode shapes. 

According to statistical mechanics, we can predict 
that the contribution to a conformational change due 
to the motion along a normal mode is inversely 
proportional to the square root of the corresponding 
eigenvalue (see Appendix). In other words, the global 
slow motions of structures are dominantly ruled by a 
few low-frequency modes. Since only a few lowest 
modes are of interest, the full sets of eigenvalues and 
eigenvectors are not necessary in this context. In 
practice, we have used the “eigs” command in Matlab 
to numerically find a few eigenvalues and 
eigenvectors of a large but sparse matrix. NMA 
enables one to infer the global motions and functions 
of a macromolecule from its structural information. 

 
2.4. Anharmonic pathway generated by ENI 

Conformational transitions between two forms of a 
same macromolecule are very important to understand 
the connection between its structure and function. 
Since NMA is not able to predict large anharmonic 
motions and pathways of macromolecules, several 
interpolation techniques have been utilized to generate 
plausible intermediate conformations. The pros and 
cons of Cartesian coordinate (linear) interpolation, 
internal coordinate interpolation, and other energy 
based approaches have been discussed in [7]. 

The key idea of ENI is to interpolate two sets of 
distances between spatially close point masses by 
solving an optimization problem. Suppose the sets of 
Cartesian coordinates describing representative αC  
atoms in two different conformations are denoted as 

ix
G

 and iy
G

, respectively. Then we introduce a penalty 
(cost) function as follows 
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where the linking matrix k  is the “union” of the two 
linking matrices for }{ ix

G
 and }{ iy

G
built by the 

number-cutoff method [8]. This cost function can be 
slightly modified to be fitted with symmetry-
constrained and rigid-cluster ENMs, respectively [10, 
12]. The value ijl  is the distance constraint between 
i  and j , which can be chosen as  

(1 ) ,ij i j i jl x x y yα α= − − + −
G G G G            (12) 

where )10( <<αα  sets the coefficient specifying 
how far a given state is along the transition from }{ ix

G
 

to }{ iy
G

. 
An intermediate conformation can be obtained by 

finding δ
G

 which minimizes the cost function. 
Assuming the movements are pretty small, (11) can be 
approximated as 

,
2
1

2
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where Γ  is a 3n × 3n matrix, γ
G

 is a 3n-dimensional 
row vector, and B  is a constant (for more details, 
refer to [7]). To minimize )(δ

G
C  with respect toδ

G
, 

differentiation results in the following constraint 
equation: 
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From (14), the solution δ
G

 is calculated when 
01.0=α  so that we can obtain the first intermediate 

conformation denoted as }{ 1
ix
G

 by adding δ
G

 to the 
initial set of coordinates. That is, 

,1
iii xx δ
GGG

+=     (15) 

where 1
ix
G

 is the position of the thi  atom out of the 

set }{ 1
ix
G

. In general, the remaining conformations are 
iteratively generated by increasing α  of (12) with 
increment of 0.01. However, this incremental step size 
can be adjusted depending on the magnitude of 
conformational difference between two end confor-
mations measured by root-mean-square deviation 
(RMSD).  

 
3. SIMULATION RESULTS 

 
3.1. NMA for G-actin and GroEL-GroES complex 

To test coarse-grained ENMs, we particularly 
choose two proteins, G-actin and GroEL-GroES 
complex, which represent the small and large 
structures, respectively. We will briefly discuss 
topological features of those examples and do NMA. 

The X-ray crystallography provides Cartesian 
coordinates of G-actin at atomic level (PDB code: 
1ATN). We use only αC  positions to represent each 
residue (i.e., amino acid) of this protein. G-actin 
consists of 2 domains, each of which has 2 
subdomains (see Fig. 6). The small domain is divided 
into subdomains 1 (ASP1 to PRO32, GLU72 to 
ALA144, and SER338 to ARG372) and 2 (SER33 to 
TYR69). Here the first three-letter code indicates the 
abbreviation of each amino acid name and the 
following number labels its location along the protein 
backbone chain. The large domain is also divided into 
subdomains 3 (SER145 to LEU180 and GLU270 to 
TYR337) and 4 (ALA181 to MET269) [15]. All mass 
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elements are set to be unity and a linking matrix is 
made by the cutoff distance of 12Å. Despite this 
simplification the low-frequency normal modes still 
provide information on the large domain motions that 
we are interested in. 

We take a closer look at the lowest four modes and 
identify their corresponding residue motions. Fig. 7 
shows which residues dominantly fluctuate in modes 
1 and 2. It appears that the residue motions are highly 
concentrated on a turn structure of subdomain 2 
(MET44 through MET47), which is the most flexible 
part of G-actin. The inset cartoon illustrates 
corresponding mode shapes. Likewise, Fig. 8 shows 
the characteristics of modes 3 and 4. We still have the 
traces of modes 1 and 2, even less concentrated. 
However, a new active region is found at subdomain 4, 
as well as many scattered peaks throughout the rest of 
the plot. They produce a scissor-like bending motion 
between subdomains of each domain. These global 
motions were consistently observed by Tirion and 
Benavraham [4]. They performed an all-atom based 
NMA with an empirical potential function 
parameterized not only main-chain torsion angles but 
also side-chain torsion angles. 

Functionally, G-actin is transformed to the thin 
filament of muscle fiber called F-actin. During this 
polymerization, the bound Adenosine Triphosphate 
(ATP), the major energy currency of the cell, is 
hydrolyzed to the bound Adenosine Diphosphate 
(ADP) and the cleaved phosphate group. F-actin plays 
a role in muscle contraction and relaxation in 
conjunction with myosin. This mechanochemical 
event may be facilitated with the exposure of the 
nucleotide binding site induced by the twist and 

bending motions of G-actin identified by NMA. 
The next example protein is the GroEL-GroES 

complex. It is widely believed that this protein assists 
the folding of misfolded proteins with the 
consumption of ATP. Using X-ray crystallography it 
has been revealed that this complex are formed by 
GroEl, GroES, and seven bound ADP molecules (PDB 
code: 1AON) [16]. The overall shape looks like a 
seven-fold bullet composed of the GroES cap and two 
GroEL ring structures stacked back to back as shown 

 
 
Fig. 6. Schematic of 3D structure of the G-actin with

ribbon representation. The large domain is on
the left hand side and the small domain is on
the right hand side. The two small subdomains
are 2 and 4 and the two large subdomains are
1 and 3. The most flexible turn is marked as a
box in subdomain 2. The nucleotide binding
site is located at the center of the structure (not
displayed here). 

 
Fig. 7. Characteristics of G-actin in modes 1 and 2.

Magnitude of each residue due to modes 1
and 2 is, particularly, presented here. The
corresponding mode shapes show the high
concentration on subdomain 2 which bends
and twists significantly. The mobility of the
other subdomains is relatively small. 

 

 
Fig. 8. Characteristics of G-actin in modes 3 and 4.

The traces of modes 1 and 2 still remain but
residue motions are delocalized in modes 3
and 4. The large and small domains bend to
either the same direction (mode 3) or the
opposite direction (mode 4). These motions
make the ADP binding site open and closed.
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in Fig. 9 [17]. The major deformation of the GroEL 
ring is associated with the GroES binding. When the 
GroES binds to the top surface of the GroEL ring, it 
results in the expansion of the cavity volume. It is 
called the cis ring. In contrast, the release of the 
GroES from the cis ring triggers the conformational 
change back to the unliganded GroEL called trans  
ring [18,19]. 

The total number of residues is 8,015 so that the 
matrix size is 24,045. Since this number is too huge 
for a matrix in Matlab, it should be divided into 
submatrices of which the size is small enough to 
handle within a reasonable time on a PC. We limit the 
size of a submatrix below 3,000 in this context. To 
avoid memory limitations, all the matrices are stored 
as sparse forms. This enables to collect all non-zero 
elements of submatrices and then put them together to 
build a whole stiffness matrix in a sparse form. Now 
we apply the “eigs” function to this large and sparse 
matrix in order to find the low-frequency normal 
modes.  

As a result, the first 10 lowest modes are sketched 
in Fig. 10. In the first mode, two GroEL rings rotate 
about the symmetry axis but each ring moves to the 
opposite direction. The second and third modes look 
like sliding motions between two rings. The only 
different thing is that the direction of motion in the 
second mode is perpendicular to that of the third mode. 
Likewise, the fourth and fifth modes complement each 
other. In these modes, the bullet shape is deformed so 
that the upper ring is somewhat skewed. In the sixth 
mode, the large motion of the upper cis ring looks like 
a squeezing motion. This theoretically calculated 
mode shape has good agreement with the 
experimentally observed motions between cis and 
trans  states during the reaction cycle [17]. In the 
seventh mode, the swing motion of the GroES is 
observed. It might be related to its docking and 
releasing motions. The eighth mode is the elongation 
along the symmetry axis, whereas the ninth mode is 
the expansion perpendicular to the axis. These two 
modes are related to the volume change of the cis ring. 
In the tenth mode, the conformational change of the 

lower trans  ring is observed. 
From these two examples, we note that only a few 

low-frequency modes are required to capture well the 
essential dynamics of a protein and also are strongly 
related to its biological function. Animations for those 
mode shapes are presented at a web server 
(http://biomechanics.ecs.umass.edu/umms.html) called 
UMass Morph Server (UMMS). 

 
3.2. ENI for a chaperonin called rosettasome 

As an example of symmetry-constrained ENI, we 
choose a chaperonin protein called rosettasome. 
Chaperonins are multi-subunit protein complexes 
referred to as heat shock proteins (HSPs). They are 
synthesized in a cell to increase tolerance for heat and 
other HSP-inducing stresses. It is widely believed that 
chaperonins play an important role in folding of 
newly synthesized proteins and refolding of misfolded 
proteins damaged by HSP-inducing stresses in the 
cytoplasm of the cell in vivo [20,21]. However, it has 
been recently proposed that the rosettasome, a double-
ring complex HSP synthesized at lethal temperatures 
over 90ºC, may function as a membrane skeleton to 
change the permeability of the membrane in the 
hyperthermophilic archaeon shibataeSulfolobus  [22, 
23]. 

Both “closed” and “open” conformations of 
rosettasome are isolated from cells as double-ring 

 

Fig. 9. A cartoon of the GroEL-GroES complex. An
asymmetric unit of GroEL is illustrated by
space-filling representation. Seven identical
subunits comprise a ring structure. 

 

 

Fig. 10. Pictorial representation of the first 10 lowest
mode shapes of the GroEL-GroES chaperonin
complex. 
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complexes as shown in Fig. 11. Each ring consists of 
9 asymmetric units (Chains A through I). An 
asymmetric unit consists of 503 residues from LYS28 
to ALA530. To visually compare the structures of 
closed and open conformations, VAL529 and ALA530 
are discarded from the open conformation because 
they are not provided in the closed conformation. 

The 9-fold ring structure of rosettasome is 
reconstructed by copying an asymmetric unit, denoted 
as Chain A, with rigid-body rotation about the z -axis 
every 40º in this context. Initially the position and 
orientation of Chain A are fitted well in space not 
causing steric clash problems with other copying units. 
If the given two rosettasome structures are perfectly 
symmetric and symmetry constraints always hold 
during conformational changes, then the symmetry-
constrained ENI can be applied to generate 
intermediate without having to consider the whole 
structure, but rather only a single asymmetric unit 
together with a representation of how it interacts with 
neighboring units. For example, Chain A is 
surrounded by Chains B and I. 

Symmetry-constrained ENI efficiently generates a 
feasible pathway between the closed and open 
conformations in Fig. 12. The RMSD of each 
intermediate is calculated with respect to the initial 
conformation. Fig. 13(a) shows that this RMSD 
increases monotonically. To test the possibility of 
steric clashes between atoms during the transition, the 
minimum distance over all possible pairs of αC  
atoms within three consecutive Chains A, B, and I is 
computed. Fig. 13(b) shows the minimum distances of 
each intermediate conformation. It is observed that 
those minimum contacts do not occur in inter-

connections between two chains, but in intra-
connections within a chain. That is, there is no steric 
conflict between chains during the transition. 

 
4. CONCLUSIONS 

 
Coarse-grained ENMs are addressed as a new tool 

for the study of macromolecular structure and 
dynamics. For example, only Ca atoms are treated as 
representatives of each residue of a protein and the 
interaction between proximal residues is modeled with 
a linear spring. We also discuss symmetry-constrained, 
rigid-cluster, and hybrid ENMs for improving both 
computationally efficiency and physical reality. Using 
a harmonic potential function based on the proposed 
ENM, NMA is performed to elucidate an equilibrium 
dynamics of a macromolecule analytically. Simulation 
results show that several low-frequency modes 
dominantly contribute to the global motions of a 
macromolecule, but they are also insensitive to 
perturbations of stiffness values. The ENI method is 
developed to optimally examine the conformational 
transition between two meta-stable conformations of a 
same macromolecule by minimizing a cost function 
derived from its ENM. Unlike dynamics-based 
methods such as MD and NMA, ENI is purely 
geometric so that the number of required intermediate 
frames can be dictated only by the difference in shape 
between the two conformations. ENI reliably 
generates anharmonic pathways without steric clashes. 
Both NMA and ENI results are posted at UMMS 
(http://biomechanics.ecs.umass.edu/umms.html). One 
can request harmonic or anharmonic analysis of a 
macromolecule of interest through this online server. 
In the near future, this insightful approach will be 
further explored to i) establish a topology-based 
folding theory in which ENI might serve as a tool for 
prediction of the folding pathway from a molten 
globule (i.e., a stable, partially folded protein state) to 

 
Fig. 11. The double-ring structure of rosettasome. Each

ring is 160Å in diameter and 75Å in height. It
has been recently discovered that the double-
rings associate to form filaments [23]. The
closed and open conformations of rosettasome
are also displayed (top-down view).  

 

 

Fig. 12. The conformational transition from closed (left)
to open (right) conformations of rosettasome.  

(a)                    (b) 

Fig. 13. Characteristics of the simulated pathway of
rosettasome. (a) The RMSD value of inter-
mediate conformations with respect to the
closed form increases monotonically. (b)
The minimum distance between all possible
pairs of Ca atoms in intermediate conforma-
tions shows that the symmetry-constrained
ENI observes steric constraints well. 
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the native structure, ii) search new drugs based on 
ligand binding simulations, iii) understand the role of 
point mutations and associated large conformational 
changes in human inherited diseases, and iv) develop 
a hierarchical system including both discrete and 
continuum models for the study of mechanical 
behaviors of polymer composites with multi-scale 
(nano and micron sized) reinforcements. 

 
APPENDIX A 

Magnitude of RMS fluctuations 
Given a αC  coarse-grained ENM with n residues, 

a set of eigenvalues and eigenvectors can be obtained 
from NMA. The thk  normalized eigenvector is 
given by 
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where the motion of residue i  due to mode k  is 
given by 3Rs i

k ∈
G

. In this context, a subscript 
indicates a mode number, whereas a superscript 
indicates a residue number. If the amplitude of 
vibration due to mode k  is denoted as kα , the 
displacement of residue i due to mode k is defined as 
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where kλ  is the thk  eigenvalue and kφ  is the 
phase difference at mode k . The RMS fluctuation of 
residue i  due to mode k  is defined as 
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where 2 / .kp π λ=  The RMS fluctuation of residue 
i due to all modes is defined as 
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The cross-correlation between residues fluctuations 
(i.e., the displacement covariance) is theoretically 
calculated from 
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 is the displacement of residue i and )(δ
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is the probability density 
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where the conformational partition function Zc= 
1exp[ ( )]
B
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and )(δ
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V is the potential energy 

function in (9). The fluctuation vector of residue i  
due to all modes can be written as 
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where iQ  is a n33×  matrix and q
G

 is the gene-
ralized coordinates of the system. Substitution into 
(20) yields 
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If we denote j
T
iji QQS =, , then the ),( thth ba  element 

of jiS , , denoted as bajis ,,, , is of the form 

.,,,
j

b
i
abaji sss
GG
⋅=     (24) 

Using this notation, (23) can be changed to the 
summation of integrals such that 
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Finally, we get 
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The RMS fluctuation of residue i , denoted as iσ , is 
calculated by setting ji =  in the above equation 
such that 
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From (19) and (27), i
kσ  can be written in another 

form such that 
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Substitution into (18) yields 
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Additionally, the RMS fluctuation of all residues due 
to mode k , denoted as kσ , is obtained as 
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Hence the magnitude of RMS fluctuations is inversely 
proportional to the vibrational frequencies ( kω =  

)kλ  of the system. 
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