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Phyllotaxis (Greek: phylon=leaf, taxis = order)

Botanical elements are commonly arranged so that:

• They form two families of spirals whose numbers
are successors in the Fibonacci sequence:

1,1,2,3,5,8,13,21,34,55,89,144, ...

• The ”divergence” angle between two chronologi-
cally successive element tends to 360o/τ = 222.48o...

where τ = 1+
√

5
2

is the Golden Mean.
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Goals for our Models

• to reproduce and explain important features of botan-
ical patterns

• to allow a thorough mathematical (and not only
numerical) analysis

• to make predictions about phenomena either ig-
nored or ill understood by botanists

• to be robust under perturbations and lend them-
selves to “upgrades”

• compatibility with some of the current biochemical
or biomechanical models

• beauty and simplicity
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Primordia Formation at the Apex of a Plant

Primordia

ApexPlant

Hofmeister’s Hypotheses (see also Snow & Snow)

• Primordia form periodically

• Once formed, they move radially away from the
apex

• The new primordium forms where the older ones
left it “most space”
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The Dynamical System

Φ
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• Configurations

Points {p0, p1 . . . , pN} on the cylinder, where pk =
(θk, yk) and yk = ky

Since the growth parameter y is constant (for now),
configuration space is TN+1, parameterized by the
absolute angles θk.

• Map Φ of the form:

Θ0 = F (θ0, . . . , θN)
Θ1 = θ0

...
ΘN = θN−1

where F implements the “least crowded” condition.
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Maximin Principle
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P0 is in the least crowded place on T1, as measured by

max
P∈T1

{min
k

Dis(Pk, P )}.

Consequences:

• Equidistance: P0 is equidistant to its nearest neigh-
bours Pn, Pm.

• Opposedness: Pn, Pm are on opposite sides of P0.

• Damping: A small variation in θm or θn induces a
smaller variation in Θ0:

0 < a =
∂Θ0

∂θm
< 1 and

∂Θ0

∂θn
= 1 − a
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Fixed Points and Invariant Circles

Due to circular symmetry, consider the space of config-
uration shapes TN+1/T1 = TN parameterized by diver-
gence angles:

xk = θk+1 − θk

The map Φ gives rise to a quotient map φ on TN , of
the form:

X0 = f(x0, . . . , xN)
X1 = x0

...
XN−1 = xN−2

• Fixed points of φ are cylindrical lattices: xk = Xk =
xk−1.

• All fixed points of φ are sinks: Damping condition
and format of the differential Dφ.

• The fixed points of φ correspond to normally at-
tracting invariant circles of Φ.
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Cylindrical Lattices and Botany

A cylindrical lattice is a group {zk} = {kx + iky} mod 1
(∼= Z) generated by a single z = x + iy in the cylinder
C/Z. We only look at k ≥ 0. Think of z ∈ H.

The helixes seen in plants, called parastichies, are gener-
ated by joining points to nearest neighbors in the cylin-
drical lattice.

1
2
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If zm = mz − ∆m and zn = nz − ∆n, are nearest to 0,
they generate subgroups ∼= nZ and mZ on the cylinder.

Parastichies are cosets of these subgroups. There are n
and m of them (resp.).

The pair (m, n) is the parastichy numbers. The pair
{zm, zn} generate the same planar lattice Λ(z) as {z,1}.
We call them a cannonical or parastichy basis for Λ(z).

To understand why parastichy numbers follow the Fi-
bonacci sequence in plants, classify lattices according
to parastichy numbers, and study the fixed points bifur-
cation diagram.
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Classification of Lattices

Use z to parameterize planar lattices Λ(z) generated by
{z,1}. Partition upper half plane into regions where
{nz, mz} (mod 1) form a parastichy basis.

Start with the set Q where z1 = z and z0 = 1 form a
parastichy basis. Then proceed by homothecy.

Q = Q+ ∪ Q−, where Q+ (resp. Q−) is the set of z such
that {z,1} is a parastichy basis and |z| ≥ 1 (resp. ≤ 1).

1

2 3
4

5
6

0

A B

1 2 3

4 5 6

Q− is the reflexion of Q+ about the unit circle: if {z,1} parastichy
basis of the lattice Λ(z), then {1,1/z} is a parastichy basis of Λ(1/z)
by homothecy, and {1,1/z} is a parastichy basis of Λ(1/z).

If z ∈ Q+, then |z| > 1 and |1/z| < 1, so 1/z ∈ Q−.
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Let z belong to the strip Re(z) ∈ (0,1).

If the pair {zm, zn} is a parastichy basis for Λ(z) then:
{zm/zn,1} is a parastichy basis for the homothetic lattice
Λ(w) with

w = zm/zn =
mz − ∆m

nz − ∆n
⇔ z = gmn(w)

def
=

∆nw − ∆m

nw − m

with ∆mn − ∆nm = 1,
[
∆m

m
, ∆n

n

]
⊂ (0,1).
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∆n + ∆m
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The images Q′, R′, L′ of Q, R, L under gmn are

Q′ = Qmn, R′ = Qm,m+n, L′ = Qm+n,n,

where Qmn is the set of z such that {zm, zn} is a paras-

tichy basis.
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Van Iterson Diagram

-0.5 0 0.5 1
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The fixed point bifurcation diagram is a subset of the

binary tree of rhombic lattices, shown in blue (equidis-

tance condition).
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Fibonacci Rule

Use the opposedness condition and maximality to prune
the Van Iterson diagram:

z*

violate maximality

∆m

m

∆n + ∆m

n + m
∆ n

n

violateThese opposedness

These

As the parameter z moves down (it does in plants, at

inflorescence, e.g.) only one branch is chosen at each

branch point, moving through a sequence of Qmn with

m, n successors in a Fibonacci like sequence. The only

branch starting high up is the Fibonacci sequence. The

corresponding sequence of ∆m/m tends to 1/τ .
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Further Research

Periodic Orbits We also find periodic orbits, that is
configurations whose sequence of divergence angles is
periodic.

Botanists observed on Michelia:

134o,94o,83o,138o,92o,86o,136o,310o,134o, . . .

We find numerically:

130o,89o,89o,130o,89o,89o,130o,315o,130o, . . .

The following is a period 2 point (proven!)

-0.4 -0.2 0 0.2 0.4
0

Questions: Is the phase space filled with basins of at-
traction of periodic orbits? Is there chaos in this sys-
tem?

Breaking the Symmetry Many flowers are elliptic. The

spiral structure seems to survive for small ellipticity, and

chaos seems to occur for larger perturbation. Mathe-

matically: normally attracting invariant circles. Working

with botanist Meicenheimer...
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Spectrum of DΦ

The differential of Φ is:

n m


0 . . . 0 a . . . 1 − a 0 . . . 0

1 0 . . . . . . . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . . . . . . . 0

. . . . . . . . .

. . . . . . . . .

0 1 0

. . . . . . . . .

. . . . . . . . .

0 1 0




Thanks to the damping condition, a and 1 − a are in
(0,1). Moreover, by lattice geometry, m and n must be
coprime at a fixed point. This implies that the upper
m × m submatrix A of DΦ is a nonnegative matrix, and
Aq is strictly positive for q large enough.

Perron Fröbenius Theorem applies: all eigenvalues of A

are less than its maximal one, which is 1. The rest of DΦ

only contributes the 0 eigenvalue. The eigendirection of

1 is quotiented out in Dφ.
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Primordia Formation at the Apex of a Plant

Primordia

ApexPlant

Hofmeister’s Snow & Snow’s Hypotheses

• Primordia form periodically not necessarily

• Once formed, they move radially away from the
apex

• The new primordium forms when and where the
older ones left it most space enough space.

(This allows both spiral and whorled patterns)
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