
Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Use Cases - Include

A
call B

C
D

J
E
B

B
J
E
B

J
E

call B

<<include>>

<<include>>

When two or more use cases share a part of behavior so the
shared behavior is factorized in a new use case
The new use case is not a normal use case, that is it will not be
activated by an actor (90%)
When the original use case is activated the included use cases
are activated too (always)
The include relationship is “explicit”

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Use Cases - Extend

Extension point
Do it B

<<extend>>
Do it: [Cond]

If a condition is true a use case needs another to complete its
behavior
The new use case is a normal use case, that is it is activated by
an actor (90%)
When the original use case is activated according to the
condition the extend use case is activated
The extend relationship is “implicit”

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Login use case that includes all of the other use cases that are
secure

In addition to updating the diagram, it is also necessary to
write the text of the login use case. None of the other use cases
change.

Customer

Place order

Login

<<include>>

Get status on order

<<include>>

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

1. The use case begins when the customer starts the application
2. The system prompts the customer to enter a username and

password
3. The customer enter a username and password
4. The system verifies that this is a valid user
5. While the customer does not select exit, do the following steps in

any order
6. The customer may choose to place an order (include Place

Order)
7. The customer may choose to get the status on an order (include

Get Status on Order)
end loop.
8. The use case ends.

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Benefits

The use case diagram looks like what the designer expect: The
customer logs in, and form there he she can access any of the
allowed system functions

Drawback

The text of the use case is difficult to maintain in case a new use
case is needed in the system. It is possible to forget to make the
change to login

It is not good that the login has the knowledge of all other parts
of the system, Use cases have to be independent of each other

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

The other use cases include login

It is necessary to update the use case diagram and the text

Login

Place order

<<include>>

Customer

Get status on order

<<include>>

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Login Use Case

1. The use case begins when the customer starts the application

2. The system prompts the customer to enter a username and password

3. The customer enter a username and password

4. The system verifies that this is a valid user

5. The use case ends

Partial Place Order Use Case

1. The use case begins when the customer logs in to the system (include
login)

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Benefits

The login use case describes login and nothing else

Drawbacks

The Place Order use case and the diagram make it appear that
the customer has to log in every time s/he wants to do
something

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Extension Point

DoIt: after valid
login

Login Use Case

The other use cases extend the login use case

It is necessary to update the use case diagram and the text

Place order

Get status on order

Customer Login

<<extend>>

<<extend>>

(DoIt) [place order selected]

(DoIt) [get status on order selected]

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

1. The use case begins when the customer starts the application

2. The system prompts the customer to enter a username and password

3. The customer enter a username and password

4. The system verifies that this is a valid user

5. While the customer does not select exit

6. Extension point: Do It

7. The use case ends

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Benefits
The customer logs one time and from there gets access to the resto of
the system. Login adds an extension point, but that is all, it is no
necessary to change it when adding new use cases

Drawbacks
The description of the extentio. It can be a difficult relationship to
explain, especially to peole who are not developers

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

The login extend the other use cases

It is necessary to update the use case diagram and the text

Customer

Extension Point
DoIt: not logged

Place order

Get status on order

Login

<<extend>>

<<extend>>

(DoIt) [login]

(DoIt) [login]

Extension Point
DoIt: not logged

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case
1. The use case begins when the customer starts the application
2. The system prompts the customer to enter a username and

password
3. The customer enter a username and password
4. The system verifies that this is a valid user
5. While the customer does not select exit
6. The use case ends

Place Order Use Case
1. Extension point: Do It
Get Status on Order Use Case
1. Extension point: Do It

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Benefits

The login only describes login and nothing else

Drawbacks

The description of the extension relationship can be a difficult
to explain, especially to peole who are not developers

All the use cases has to adds the extension point

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

The login use case can be completely independent of the other
use cases, but a precondition is included in the other use cases
that a valid user be logged in before they can be executed
It is necessary to update the use case diagram and the text

Login

Place order

Customer

Get status on order

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

1. The use case begins when the customer starts the application

2. The system prompts the customer to enter a username and password

3. The customer enter a username and password

4. The system verifies that this is a valid user

5. The use case ends

Partial Place Order Use Case

Assumption: A valid user has logged into the system

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

Benefits

The login only describes login and nothing else

The diagram and the text are clear and easy to understand and
the system is more flexible

Place Order does not require login to execute, but just a valid
user. Executing login is one way to get a valid user, but there
may be other validation methods as well

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Login Use Case

The last approach seem to be the easiest to read and it has

the most flexibility

However, all the approaches are correct, so the developer

can pick the one that works best for his/her project

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Documenting Create, Read, Update, Delete

This kind of use cases are often necessary in applications that include
maintaining data

Two approaches:

– Create a separate use case for each kind of access to the data

– Create one use case for a data type that embeds all of the CRUD
functions

When the use case is named by the behavior that the user expects,
they are not called Create Order, Read Order, Update Order and
Delete Order. The developer uses names that makes sense to the users
of the system

Prof. Claudia A. Marcos - ISISTANDesarrollo de Software con UML

Documenting Create, Read, Update, Delete

It is possible to make one use case called something like Maintain
Orders, which have been in charge of anything having to do with
orders. This does not really make sense because different actors use
separate CRUD functions, so it makes more sense to make them
separate use cases

On the other hand, in some applications combining them may be
sensible, for example, if the application is for a database
administrator to update tables in a database

The best way is to begin with separate use cases and them analyze if
the can be merged to make them easier to read and maintain

P

